generated_from_trainer

<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. -->

flant5_sum_samsum

This model is a fine-tuned version of google/flan-t5-base on an unknown dataset. It achieves the following results on the evaluation set:

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

Training results

Training Loss Epoch Step Validation Loss Gen Len Rouge Score Bleu Score Bleurt Score Bert Score
0.0 1.0 921 nan 16.6760 {'rouge1': 0.4648609117501229, 'rouge2': 0.23489748856950105, 'rougeL': 0.3936027885754436, 'rougeLsum': 0.3932448622689456} {'bleu': 0.12048170853922512, 'precisions': [0.5838656689176857, 0.28994082840236685, 0.17667882428663376, 0.11335841956726246], 'brevity_penalty': 0.49929356415876747, 'length_ratio': 0.5901233238192687, 'translation_length': 10958, 'reference_length': 18569} -0.4863 [0.9187235832214355, 0.9003126621246338, 0.9092234373092651]
0.0 2.0 1842 nan 16.6760 {'rouge1': 0.4648609117501229, 'rouge2': 0.23489748856950105, 'rougeL': 0.3936027885754436, 'rougeLsum': 0.3932448622689456} {'bleu': 0.12048170853922512, 'precisions': [0.5838656689176857, 0.28994082840236685, 0.17667882428663376, 0.11335841956726246], 'brevity_penalty': 0.49929356415876747, 'length_ratio': 0.5901233238192687, 'translation_length': 10958, 'reference_length': 18569} -0.4863 [0.9187235832214355, 0.9003126621246338, 0.9092234373092651]
0.0 3.0 2763 nan 16.6760 {'rouge1': 0.4648609117501229, 'rouge2': 0.23489748856950105, 'rougeL': 0.3936027885754436, 'rougeLsum': 0.3932448622689456} {'bleu': 0.12048170853922512, 'precisions': [0.5838656689176857, 0.28994082840236685, 0.17667882428663376, 0.11335841956726246], 'brevity_penalty': 0.49929356415876747, 'length_ratio': 0.5901233238192687, 'translation_length': 10958, 'reference_length': 18569} -0.4863 [0.9187235832214355, 0.9003126621246338, 0.9092234373092651]
0.0 4.0 3684 nan 16.6760 {'rouge1': 0.4648609117501229, 'rouge2': 0.23489748856950105, 'rougeL': 0.3936027885754436, 'rougeLsum': 0.3932448622689456} {'bleu': 0.12048170853922512, 'precisions': [0.5838656689176857, 0.28994082840236685, 0.17667882428663376, 0.11335841956726246], 'brevity_penalty': 0.49929356415876747, 'length_ratio': 0.5901233238192687, 'translation_length': 10958, 'reference_length': 18569} -0.4863 [0.9187235832214355, 0.9003126621246338, 0.9092234373092651]
0.0 5.0 4605 nan 16.6760 {'rouge1': 0.4648609117501229, 'rouge2': 0.23489748856950105, 'rougeL': 0.3936027885754436, 'rougeLsum': 0.3932448622689456} {'bleu': 0.12048170853922512, 'precisions': [0.5838656689176857, 0.28994082840236685, 0.17667882428663376, 0.11335841956726246], 'brevity_penalty': 0.49929356415876747, 'length_ratio': 0.5901233238192687, 'translation_length': 10958, 'reference_length': 18569} -0.4863 [0.9187235832214355, 0.9003126621246338, 0.9092234373092651]
0.0 6.0 5526 nan 16.6760 {'rouge1': 0.4648609117501229, 'rouge2': 0.23489748856950105, 'rougeL': 0.3936027885754436, 'rougeLsum': 0.3932448622689456} {'bleu': 0.12048170853922512, 'precisions': [0.5838656689176857, 0.28994082840236685, 0.17667882428663376, 0.11335841956726246], 'brevity_penalty': 0.49929356415876747, 'length_ratio': 0.5901233238192687, 'translation_length': 10958, 'reference_length': 18569} -0.4863 [0.9187235832214355, 0.9003126621246338, 0.9092234373092651]
0.0 7.0 6447 nan 16.6760 {'rouge1': 0.4648609117501229, 'rouge2': 0.23489748856950105, 'rougeL': 0.3936027885754436, 'rougeLsum': 0.3932448622689456} {'bleu': 0.12048170853922512, 'precisions': [0.5838656689176857, 0.28994082840236685, 0.17667882428663376, 0.11335841956726246], 'brevity_penalty': 0.49929356415876747, 'length_ratio': 0.5901233238192687, 'translation_length': 10958, 'reference_length': 18569} -0.4863 [0.9187235832214355, 0.9003126621246338, 0.9092234373092651]
0.0 8.0 7368 nan 16.6760 {'rouge1': 0.4648609117501229, 'rouge2': 0.23489748856950105, 'rougeL': 0.3936027885754436, 'rougeLsum': 0.3932448622689456} {'bleu': 0.12048170853922512, 'precisions': [0.5838656689176857, 0.28994082840236685, 0.17667882428663376, 0.11335841956726246], 'brevity_penalty': 0.49929356415876747, 'length_ratio': 0.5901233238192687, 'translation_length': 10958, 'reference_length': 18569} -0.4863 [0.9187235832214355, 0.9003126621246338, 0.9092234373092651]
0.0 9.0 8289 nan 16.6760 {'rouge1': 0.4648609117501229, 'rouge2': 0.23489748856950105, 'rougeL': 0.3936027885754436, 'rougeLsum': 0.3932448622689456} {'bleu': 0.12048170853922512, 'precisions': [0.5838656689176857, 0.28994082840236685, 0.17667882428663376, 0.11335841956726246], 'brevity_penalty': 0.49929356415876747, 'length_ratio': 0.5901233238192687, 'translation_length': 10958, 'reference_length': 18569} -0.4863 [0.9187235832214355, 0.9003126621246338, 0.9092234373092651]
0.0 10.0 9210 nan 16.6760 {'rouge1': 0.4648609117501229, 'rouge2': 0.23489748856950105, 'rougeL': 0.3936027885754436, 'rougeLsum': 0.3932448622689456} {'bleu': 0.12048170853922512, 'precisions': [0.5838656689176857, 0.28994082840236685, 0.17667882428663376, 0.11335841956726246], 'brevity_penalty': 0.49929356415876747, 'length_ratio': 0.5901233238192687, 'translation_length': 10958, 'reference_length': 18569} -0.4863 [0.9187235832214355, 0.9003126621246338, 0.9092234373092651]

Framework versions