<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. -->
distilhubert-finetuned-gtzan
This model is a fine-tuned version of ntu-spml/distilhubert on the GTZAN dataset. It achieves the following results on the evaluation set:
- Loss: 0.8966
- Accuracy: 0.84
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 9
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
0.1326 | 1.0 | 225 | 0.6275 | 0.81 |
0.32 | 2.0 | 450 | 0.9461 | 0.78 |
0.4269 | 3.0 | 675 | 0.8966 | 0.84 |
0.1847 | 4.0 | 900 | 1.3268 | 0.8 |
0.0009 | 5.0 | 1125 | 1.0639 | 0.81 |
0.0006 | 6.0 | 1350 | 1.3213 | 0.81 |
0.0006 | 7.0 | 1575 | 1.1195 | 0.81 |
0.0004 | 8.0 | 1800 | 1.0799 | 0.83 |
0.0004 | 9.0 | 2025 | 1.1019 | 0.83 |
Framework versions
- Transformers 4.32.0.dev0
- Pytorch 2.0.1+cu118
- Datasets 2.14.1
- Tokenizers 0.13.3