<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. -->
dit-base-finetuned-rvlcdip-small_rvl_cdip-NK1000_kd
This model is a fine-tuned version of WinKawaks/vit-small-patch16-224 on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.5198
- Accuracy: 0.833
- Brier Loss: 0.2560
- Nll: 1.1465
- F1 Micro: 0.833
- F1 Macro: 0.8328
- Ece: 0.0719
- Aurc: 0.0425
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 128
- eval_batch_size: 128
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 50
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | Brier Loss | Nll | F1 Micro | F1 Macro | Ece | Aurc |
---|---|---|---|---|---|---|---|---|---|---|
No log | 1.0 | 125 | 1.0816 | 0.622 | 0.5119 | 2.5026 | 0.622 | 0.6194 | 0.0740 | 0.1657 |
No log | 2.0 | 250 | 0.8028 | 0.715 | 0.3936 | 2.1454 | 0.715 | 0.7158 | 0.0651 | 0.1017 |
No log | 3.0 | 375 | 0.7104 | 0.7505 | 0.3455 | 2.0393 | 0.7505 | 0.7464 | 0.0456 | 0.0765 |
0.9841 | 4.0 | 500 | 0.6747 | 0.7682 | 0.3267 | 1.9784 | 0.7682 | 0.7703 | 0.0455 | 0.0682 |
0.9841 | 5.0 | 625 | 0.6619 | 0.7782 | 0.3169 | 1.9299 | 0.7782 | 0.7752 | 0.0391 | 0.0649 |
0.9841 | 6.0 | 750 | 0.6416 | 0.7897 | 0.3058 | 1.8240 | 0.7897 | 0.7923 | 0.0483 | 0.0683 |
0.9841 | 7.0 | 875 | 0.6481 | 0.786 | 0.3016 | 1.8855 | 0.786 | 0.7855 | 0.0501 | 0.0640 |
0.259 | 8.0 | 1000 | 0.6273 | 0.7963 | 0.2970 | 1.7135 | 0.7963 | 0.7970 | 0.0454 | 0.0633 |
0.259 | 9.0 | 1125 | 0.6484 | 0.7927 | 0.3044 | 1.7079 | 0.7927 | 0.7911 | 0.0601 | 0.0647 |
0.259 | 10.0 | 1250 | 0.6504 | 0.7925 | 0.3046 | 1.8241 | 0.7925 | 0.7931 | 0.0577 | 0.0674 |
0.259 | 11.0 | 1375 | 0.6137 | 0.7975 | 0.2914 | 1.6742 | 0.7975 | 0.7996 | 0.0567 | 0.0675 |
0.133 | 12.0 | 1500 | 0.6092 | 0.7993 | 0.2928 | 1.6077 | 0.7993 | 0.8023 | 0.0600 | 0.0654 |
0.133 | 13.0 | 1625 | 0.5905 | 0.805 | 0.2842 | 1.5790 | 0.805 | 0.8074 | 0.0589 | 0.0623 |
0.133 | 14.0 | 1750 | 0.5794 | 0.8077 | 0.2797 | 1.4947 | 0.8077 | 0.8090 | 0.0533 | 0.0579 |
0.133 | 15.0 | 1875 | 0.5683 | 0.8075 | 0.2777 | 1.4518 | 0.8075 | 0.8076 | 0.0594 | 0.0565 |
0.1032 | 16.0 | 2000 | 0.5762 | 0.8125 | 0.2794 | 1.3998 | 0.8125 | 0.8146 | 0.0633 | 0.0551 |
0.1032 | 17.0 | 2125 | 0.5529 | 0.8115 | 0.2748 | 1.3595 | 0.8115 | 0.8126 | 0.0638 | 0.0519 |
0.1032 | 18.0 | 2250 | 0.5669 | 0.8133 | 0.2759 | 1.3803 | 0.8133 | 0.8143 | 0.0603 | 0.0547 |
0.1032 | 19.0 | 2375 | 0.5549 | 0.8177 | 0.2716 | 1.3258 | 0.8178 | 0.8186 | 0.0625 | 0.0527 |
0.0832 | 20.0 | 2500 | 0.5576 | 0.8147 | 0.2737 | 1.3814 | 0.8148 | 0.8183 | 0.0627 | 0.0513 |
0.0832 | 21.0 | 2625 | 0.5336 | 0.8247 | 0.2609 | 1.2941 | 0.8247 | 0.8243 | 0.0626 | 0.0476 |
0.0832 | 22.0 | 2750 | 0.5276 | 0.8257 | 0.2595 | 1.2491 | 0.8257 | 0.8262 | 0.0633 | 0.0455 |
0.0832 | 23.0 | 2875 | 0.5313 | 0.8193 | 0.2603 | 1.2685 | 0.8193 | 0.8198 | 0.0618 | 0.0466 |
0.0715 | 24.0 | 3000 | 0.5208 | 0.826 | 0.2575 | 1.2280 | 0.826 | 0.8266 | 0.0644 | 0.0468 |
0.0715 | 25.0 | 3125 | 0.5205 | 0.8233 | 0.2591 | 1.2235 | 0.8233 | 0.8235 | 0.0615 | 0.0459 |
0.0715 | 26.0 | 3250 | 0.5067 | 0.8293 | 0.2536 | 1.2028 | 0.8293 | 0.8298 | 0.0630 | 0.0433 |
0.0715 | 27.0 | 3375 | 0.5207 | 0.8245 | 0.2591 | 1.2148 | 0.8245 | 0.8256 | 0.0692 | 0.0449 |
0.0647 | 28.0 | 3500 | 0.5197 | 0.824 | 0.2596 | 1.1765 | 0.824 | 0.8242 | 0.0690 | 0.0469 |
0.0647 | 29.0 | 3625 | 0.5086 | 0.8315 | 0.2531 | 1.1762 | 0.8315 | 0.8319 | 0.0704 | 0.0428 |
0.0647 | 30.0 | 3750 | 0.5025 | 0.8313 | 0.2509 | 1.1560 | 0.8313 | 0.8314 | 0.0687 | 0.0439 |
0.0647 | 31.0 | 3875 | 0.5073 | 0.832 | 0.2527 | 1.1743 | 0.832 | 0.8323 | 0.0662 | 0.0426 |
0.0618 | 32.0 | 4000 | 0.5068 | 0.8303 | 0.2526 | 1.1644 | 0.8303 | 0.8304 | 0.0679 | 0.0422 |
0.0618 | 33.0 | 4125 | 0.5086 | 0.8325 | 0.2526 | 1.1658 | 0.8325 | 0.8326 | 0.0671 | 0.0415 |
0.0618 | 34.0 | 4250 | 0.5114 | 0.833 | 0.2540 | 1.1694 | 0.833 | 0.8326 | 0.0649 | 0.0440 |
0.0618 | 35.0 | 4375 | 0.5104 | 0.8305 | 0.2541 | 1.1399 | 0.8305 | 0.8309 | 0.0666 | 0.0426 |
0.0601 | 36.0 | 4500 | 0.5122 | 0.8307 | 0.2547 | 1.1755 | 0.8308 | 0.8309 | 0.0689 | 0.0435 |
0.0601 | 37.0 | 4625 | 0.5122 | 0.8323 | 0.2543 | 1.1448 | 0.8323 | 0.8326 | 0.0698 | 0.0429 |
0.0601 | 38.0 | 4750 | 0.5144 | 0.8307 | 0.2554 | 1.1444 | 0.8308 | 0.8308 | 0.0699 | 0.0414 |
0.0601 | 39.0 | 4875 | 0.5155 | 0.8307 | 0.2553 | 1.1524 | 0.8308 | 0.8308 | 0.0722 | 0.0430 |
0.0593 | 40.0 | 5000 | 0.5132 | 0.8315 | 0.2543 | 1.1554 | 0.8315 | 0.8318 | 0.0721 | 0.0423 |
0.0593 | 41.0 | 5125 | 0.5153 | 0.8335 | 0.2551 | 1.1557 | 0.8335 | 0.8332 | 0.0700 | 0.0423 |
0.0593 | 42.0 | 5250 | 0.5141 | 0.8313 | 0.2545 | 1.1530 | 0.8313 | 0.8314 | 0.0728 | 0.0419 |
0.0593 | 43.0 | 5375 | 0.5159 | 0.8313 | 0.2551 | 1.1434 | 0.8313 | 0.8312 | 0.0756 | 0.0425 |
0.0587 | 44.0 | 5500 | 0.5164 | 0.833 | 0.2548 | 1.1469 | 0.833 | 0.8329 | 0.0688 | 0.0428 |
0.0587 | 45.0 | 5625 | 0.5170 | 0.8325 | 0.2553 | 1.1486 | 0.8325 | 0.8324 | 0.0723 | 0.0426 |
0.0587 | 46.0 | 5750 | 0.5188 | 0.8325 | 0.2559 | 1.1478 | 0.8325 | 0.8324 | 0.0731 | 0.0423 |
0.0587 | 47.0 | 5875 | 0.5188 | 0.8325 | 0.2557 | 1.1515 | 0.8325 | 0.8323 | 0.0702 | 0.0424 |
0.0583 | 48.0 | 6000 | 0.5195 | 0.8327 | 0.2559 | 1.1477 | 0.8327 | 0.8325 | 0.0702 | 0.0427 |
0.0583 | 49.0 | 6125 | 0.5194 | 0.8325 | 0.2559 | 1.1464 | 0.8325 | 0.8324 | 0.0713 | 0.0426 |
0.0583 | 50.0 | 6250 | 0.5198 | 0.833 | 0.2560 | 1.1465 | 0.833 | 0.8328 | 0.0719 | 0.0425 |
Framework versions
- Transformers 4.26.1
- Pytorch 1.13.1.post200
- Datasets 2.9.0
- Tokenizers 0.13.2