Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. --> These model aim to recognise occupation mentions (NER) in Spanish clinical notes and to whom the occupation belongs.
Model Details
<style type="text/css"> .tg {border-collapse:collapse;border-spacing:0;} .tg td{border-color:black;border-style:solid;border-width:1px;font-family:Arial, sans-serif;font-size:14px; overflow:hidden;padding:10px 5px;word-break:normal;} .tg th{border-color:black;border-style:solid;border-width:1px;font-family:Arial, sans-serif;font-size:14px; font-weight:normal;overflow:hidden;padding:10px 5px;word-break:normal;} .tg .tg-c3ow{border-color:inherit;text-align:center;vertical-align:top} </style> <table class="tg"> <thead> <tr> <th class="tg-c3ow">PLM Model</th> <th class="tg-c3ow">Learning<br>rate</th> <th class="tg-c3ow">Batch size</th> <th class="tg-c3ow">Epochs</th> <th class="tg-c3ow">Max<br>length</th> <th class="tg-c3ow">Optimizer</th> <th class="tg-c3ow">Max clip<br>grad norm</th> <th class="tg-c3ow">Epsilon</th> </tr> </thead> <tbody> <tr> <td class="tg-c3ow">PlanTL-GOB-ES/<br>roberta-base-biomedical-es<br></td> <td class="tg-c3ow">2e-05</td> <td class="tg-c3ow">8</td> <td class="tg-c3ow">10</td> <td class="tg-c3ow">510</td> <td class="tg-c3ow">AdamW</td> <td class="tg-c3ow">1</td> <td class="tg-c3ow">1e-08</td> </tr> </tbody> </table>
Model Description
PlanTL-GOB-ES/roberta-base-biomedical-es model was fine-tuned using MEDDOPROF corpus (Salvador Lima-López, Eulàlia Farré-Maduell, Antonio Miranda-Escalada, Vicent Briva-Iglesias, & Martin Krallinger. (2022). MEDDOPROF corpus: complete gold standard annotations for occupation detection in medical documents in Spanish [Data set]. Zenodo. https://doi.org/10.5281/zenodo.7116201)
Two models were built: A model for occupation recognition (MEDDO_FINAL_ROBERTA_ner_sentencia_510_8_10_2e-05_1e-08) and a model to detect to whom the profession belongs (MEDDO_FINAL_ROBERTA_class_sentencia_510_8_10_2e-05_1e-08).
More details about this can be found in MEDDOPROF shared task: Lima-López, S., Farré-Maduell, E., Miranda-Escalada, A., Brivá-Iglesias, V., & Krallinger, M. (2021). Nlp applied to occupational health: Meddoprof shared task at iberlef 2021 on automatic recognition, classification and normalization of professions and occupations from medical texts. Procesamiento del Lenguaje Natural, 67, 243-256.
- Developed by: Alfredo Madrid
- Language(s) (NLP): Spanish
- License: CC BY-SA 4.0
- Finetuned from model [optional]: PlanTL-GOB-ES/roberta-base-biomedical-es
Model Sources
<!-- Provide the basic links for the model. -->
- Repository: https://huggingface.co/HCSCRheuma/Occupations
- Paper [optional]: Madrid García, A. (2023). Recognition of professions in medical documentation.
Uses
Model 1
import torch
import pandas as pd
import numpy as np
from transformers import AutoTokenizer, AutoModelForTokenClassification
model = AutoModelForTokenClassification.from_pretrained("MEDDO_FINAL_ROBERTA_ner_sentencia_510_8_10_2e-05_1e-08")
tokenizer = AutoTokenizer.from_pretrained("MEDDO_FINAL_ROBERTA_ner_sentencia_510_8_10_2e-05_1e-08")
note = "El paciente trabaja en una empresa de construccion los jueves"
tokenized_sentence = tokenizer.encode(note, truncation=True)
tokenized_words_ids = tokenizer(note, truncation=True)
word_ids = tokenized_words_ids.word_ids
input_ids = torch.tensor([tokenized_sentence])
with torch.no_grad():
output = model(input_ids)
label_indices = np.argmax(output[0].to('cpu').numpy(), axis=2)
tokens = tokenizer.convert_ids_to_tokens(input_ids.numpy()[0])
label_indices
df = pd.DataFrame(zip(tokens, label_indices[0], word_ids(0)), columns=["labels", "tokens", "relation"])
df['labels'] = df['labels'].str.replace('##', '')
df['tokens'] = df['tokens'].map({0: 'B-PROFESION', 1: 'B-SITUACION_LABORAL', 2: 'I-SITUACION_LABORAL', 3: 'I-ACTIVIDAD', 4: 'I-PROFESION', 5: 'O', 6: 'B-ACTIVIDAD', 7: 'PAD'})
df = df[1:-1]
df['relation'] = df['relation'].astype('int')
df['labels'] = df.groupby('relation')['labels'].transform(lambda x: ''.join(x))
df = df.groupby('relation').first()
df
Output
relation | labels | tokens |
---|---|---|
0 | ĠEl | O |
1 | Ġpaciente | O |
2 | Ġtrabaja | B-PROFESION |
3 | Ġen | I-PROFESION |
4 | Ġuna | I-PROFESION |
5 | Ġempresa | I-PROFESION |
6 | Ġde | I-PROFESION |
7 | Ġconstruccion | I-PROFESION |
8 | Ġlos | O |
9 | Ġjueves | O |
Model 2
import torch
import pandas as pd
import numpy as np
from transformers import AutoTokenizer, AutoModelForTokenClassification
model = AutoModelForTokenClassification.from_pretrained("MEDDO_FINAL_ROBERTA_class_sentencia_510_8_10_2e-05_1e-08")
tokenizer = AutoTokenizer.from_pretrained("MEDDO_FINAL_ROBERTA_class_sentencia_510_8_10_2e-05_1e-08")
note = "El paciente trabaja en una empresa de construccion los jueves"
tokenized_sentence = tokenizer.encode(note, truncation=True)
tokenized_words_ids = tokenizer(note, truncation=True)
word_ids = tokenized_words_ids.word_ids
input_ids = torch.tensor([tokenized_sentence])
with torch.no_grad():
output = model(input_ids)
label_indices = np.argmax(output[0].to('cpu').numpy(), axis=2)
tokens = tokenizer.convert_ids_to_tokens(input_ids.to('cpu').numpy()[0])
label_indices
df = pd.DataFrame(zip(tokens, label_indices[0], word_ids(0)), columns=["labels", "tokens", "relation"])
df['labels'] = df['labels'].str.replace('##', '')
df['tokens'] = df['tokens'].map({0: 'B-FAMILIAR', 1: 'I-PACIENTE', 2: 'I-OTROS', 3: 'B-SANITARIO', 4: 'B-PACIENTE', 5: 'I-FAMILIAR', 6: 'O', 7: 'B-OTROS', 8: 'I-SANITARIO', 9: 'PAD'}
)
df = df[1:-1]
df['relation'] = df['relation'].astype('int')
df['labels'] = df.groupby('relation')['labels'].transform(lambda x: ''.join(x))
df = df.groupby('relation').first()
df
Output
relation | labels | tokens |
---|---|---|
0 | ĠEl | O |
1 | Ġpaciente | O |
2 | Ġtrabaja | B-PACIENTE |
3 | Ġen | I-PACIENTE |
4 | Ġuna | I-PACIENTE |
5 | Ġempresa | I-PACIENTE |
6 | Ġde | I-PACIENTE |
7 | Ġconstruccion | I-PACIENTE |
8 | Ġlos | O |
9 | Ġjueves | O |