<!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. -->
Thamer/distilbert-fine-tuned
This model is a fine-tuned version of distilbert-base-cased on an sst2 dataset. It achieves the following results on the evaluation set:
- Train Loss: 0.0581
- Validation Loss: 0.3206
- Train Recall: 0.8761
- Epoch: 2
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': False, 'is_legacy_optimizer': False, 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 0.0002, 'decay_steps': 3156, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False}
- training_precision: float32
Training results
Train Loss | Validation Loss | Train Recall | Epoch |
---|---|---|---|
0.2134 | 0.2835 | 0.9144 | 0 |
0.1135 | 0.2992 | 0.8671 | 1 |
0.0581 | 0.3206 | 0.8761 | 2 |
Framework versions
- Transformers 4.31.0
- TensorFlow 2.11.0
- Datasets 2.13.1
- Tokenizers 0.13.3