generated_from_trainer

<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. -->

w266_model3_BERT_CNN

This model is a fine-tuned version of bert-base-uncased on the None dataset. It achieves the following results on the evaluation set:

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Precision Recall
0.7881 1.0 1923 0.8177 {'accuracy': 0.638} {'f1': 0.6219209356584174} {'precision': 0.6325213408748697} {'recall': 0.638}
0.649 2.0 3846 0.8257 {'accuracy': 0.669} {'f1': 0.6701535233107099} {'precision': 0.672307962349643} {'recall': 0.669}
0.4771 3.0 5769 0.8922 {'accuracy': 0.676} {'f1': 0.6778795418743319} {'precision': 0.6805694646691987} {'recall': 0.676}
0.3403 4.0 7692 1.4285 {'accuracy': 0.669} {'f1': 0.666176554548987} {'precision': 0.6653390405441227} {'recall': 0.669}
0.2088 5.0 9615 1.7417 {'accuracy': 0.67} {'f1': 0.6716636513157895} {'precision': 0.6752339933799478} {'recall': 0.67}

Framework versions