generated_from_trainer

<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. -->

vit-base-patch16-224-in21k-tiny_rvl_cdip-NK1000_hint

This model is a fine-tuned version of WinKawaks/vit-tiny-patch16-224 on the None dataset. It achieves the following results on the evaluation set:

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

Training results

Training Loss Epoch Step Validation Loss Accuracy Brier Loss Nll F1 Micro F1 Macro Ece Aurc
78.9278 1.0 1000 78.3645 0.588 0.5476 2.4320 0.588 0.5825 0.0552 0.1928
77.6109 2.0 2000 77.4909 0.684 0.4259 2.1686 0.684 0.6879 0.0496 0.1167
77.1849 3.0 3000 77.1828 0.7185 0.3854 2.1032 0.7185 0.7200 0.0495 0.0932
76.8526 4.0 4000 76.9800 0.748 0.3549 2.0716 0.748 0.7492 0.0768 0.0781
76.5928 5.0 5000 76.7544 0.743 0.3576 2.0634 0.743 0.7461 0.0564 0.0846
76.1507 6.0 6000 76.5850 0.7688 0.3354 2.0506 0.7688 0.7698 0.0857 0.0701
75.8107 7.0 7000 76.5816 0.75 0.3766 2.1753 0.75 0.7542 0.1230 0.0815
75.868 8.0 8000 76.5048 0.785 0.3324 2.0865 0.785 0.7869 0.1244 0.0623
75.6016 9.0 9000 76.3919 0.7827 0.3475 2.0858 0.7828 0.7849 0.1340 0.0657
75.4883 10.0 10000 76.5121 0.7768 0.3644 2.1372 0.7768 0.7747 0.1550 0.0662
75.2568 11.0 11000 76.4107 0.7857 0.3603 2.1229 0.7857 0.7863 0.1561 0.0619
75.1623 12.0 12000 76.4517 0.771 0.3857 2.1118 0.771 0.7721 0.1681 0.0702
75.0021 13.0 13000 76.3632 0.7885 0.3635 2.1178 0.7885 0.7870 0.1607 0.0621
74.9056 14.0 14000 76.3074 0.7925 0.3533 2.1361 0.7925 0.7926 0.1626 0.0573
74.9295 15.0 15000 76.3445 0.785 0.3730 2.0515 0.785 0.7861 0.1694 0.0661
74.7288 16.0 16000 76.3441 0.7845 0.3776 2.1216 0.7845 0.7828 0.1731 0.0666
74.5985 17.0 17000 76.1255 0.794 0.3593 2.0759 0.7940 0.7969 0.1640 0.0605
74.471 18.0 18000 76.2140 0.7863 0.3721 2.1872 0.7863 0.7861 0.1705 0.0638
74.4457 19.0 19000 76.1380 0.7925 0.3650 2.1106 0.7925 0.7940 0.1708 0.0634
74.3675 20.0 20000 76.1423 0.7897 0.3684 2.0882 0.7897 0.7910 0.1731 0.0642
74.3618 21.0 21000 76.0578 0.7987 0.3604 2.1007 0.7987 0.7982 0.1676 0.0622
74.1398 22.0 22000 75.9928 0.7997 0.3578 2.0590 0.7997 0.8008 0.1672 0.0624
74.0834 23.0 23000 75.8857 0.8013 0.3561 2.0986 0.8013 0.8010 0.1662 0.0602
74.1467 24.0 24000 75.8767 0.8 0.3605 2.0794 0.8000 0.8014 0.1682 0.0608
73.8823 25.0 25000 75.9471 0.799 0.3564 2.0934 0.799 0.7997 0.1684 0.0619
73.9657 26.0 26000 75.8618 0.7987 0.3594 2.1020 0.7987 0.7991 0.1703 0.0599
73.9721 27.0 27000 75.7331 0.8145 0.3347 2.0514 0.8145 0.8144 0.1569 0.0571
73.8298 28.0 28000 75.8175 0.8007 0.3582 2.0923 0.8007 0.7999 0.1714 0.0625
73.8483 29.0 29000 75.7541 0.8023 0.3554 2.1075 0.8023 0.8002 0.1698 0.0603
73.6726 30.0 30000 75.6642 0.8095 0.3454 2.0600 0.8095 0.8092 0.1638 0.0600
73.7118 31.0 31000 75.5905 0.8105 0.3398 2.1354 0.8105 0.8106 0.1587 0.0595
73.5938 32.0 32000 75.5721 0.8087 0.3429 2.0765 0.8087 0.8094 0.1640 0.0616
73.5563 33.0 33000 75.7021 0.8085 0.3474 2.0825 0.8085 0.8092 0.1656 0.0633
73.6469 34.0 34000 75.5322 0.8095 0.3406 2.0907 0.8095 0.8079 0.1632 0.0590
73.4666 35.0 35000 75.4994 0.8105 0.3397 2.0839 0.8105 0.8102 0.1621 0.0590
73.4144 36.0 36000 75.5095 0.8063 0.3476 2.1055 0.8062 0.8050 0.1666 0.0616
73.2744 37.0 37000 75.4980 0.8117 0.3403 2.0693 0.8117 0.8123 0.1607 0.0569
73.4358 38.0 38000 75.4824 0.809 0.3434 2.0996 0.809 0.8090 0.1645 0.0586
73.2696 39.0 39000 75.5088 0.8085 0.3468 2.0697 0.8085 0.8089 0.1658 0.0589
73.382 40.0 40000 75.4705 0.8095 0.3437 2.0738 0.8095 0.8104 0.1641 0.0621
73.3006 41.0 41000 75.4697 0.809 0.3440 2.1203 0.809 0.8097 0.1624 0.0614
73.4237 42.0 42000 75.3601 0.8093 0.3434 2.0736 0.8093 0.8094 0.1629 0.0575
73.2571 43.0 43000 75.3364 0.8103 0.3398 2.0665 0.8103 0.8101 0.1630 0.0599
73.2241 44.0 44000 75.3369 0.8135 0.3381 2.0609 0.8135 0.8136 0.1600 0.0581
73.2271 45.0 45000 75.2917 0.814 0.3355 2.0906 0.8140 0.8142 0.1576 0.0582
73.1427 46.0 46000 75.3108 0.8125 0.3377 2.0784 0.8125 0.8127 0.1613 0.0586
73.2754 47.0 47000 75.3195 0.8127 0.3386 2.0860 0.8128 0.8127 0.1604 0.0586
73.132 48.0 48000 75.3168 0.812 0.3391 2.0853 0.8120 0.8118 0.1612 0.0582
73.1482 49.0 49000 75.2943 0.8117 0.3395 2.0895 0.8117 0.8116 0.1615 0.0586
73.1849 50.0 50000 75.3146 0.811 0.3395 2.0856 0.811 0.8109 0.1625 0.0586

Framework versions