<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. -->
dit-base-tiny_rvl_cdip-NK1000_hint
This model is a fine-tuned version of WinKawaks/vit-tiny-patch16-224 on the None dataset. It achieves the following results on the evaluation set:
- Loss: 2.5793
- Accuracy: 0.8185
- Brier Loss: 0.3293
- Nll: 2.0402
- F1 Micro: 0.8185
- F1 Macro: 0.8184
- Ece: 0.1589
- Aurc: 0.0584
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 50
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | Brier Loss | Nll | F1 Micro | F1 Macro | Ece | Aurc |
---|---|---|---|---|---|---|---|---|---|---|
2.7601 | 1.0 | 1000 | 2.6212 | 0.5952 | 0.5281 | 2.4218 | 0.5952 | 0.5899 | 0.0529 | 0.1801 |
2.236 | 2.0 | 2000 | 2.1744 | 0.6847 | 0.4219 | 2.1650 | 0.6847 | 0.6827 | 0.0515 | 0.1135 |
1.9525 | 3.0 | 3000 | 1.9941 | 0.7147 | 0.3889 | 2.0860 | 0.7147 | 0.7163 | 0.0616 | 0.0961 |
1.729 | 4.0 | 4000 | 1.8880 | 0.7485 | 0.3585 | 2.1097 | 0.7485 | 0.7476 | 0.0649 | 0.0811 |
1.6172 | 5.0 | 5000 | 1.8693 | 0.7455 | 0.3598 | 2.0514 | 0.7455 | 0.7448 | 0.0733 | 0.0811 |
1.4385 | 6.0 | 6000 | 1.8350 | 0.747 | 0.3654 | 2.0917 | 0.747 | 0.7536 | 0.0828 | 0.0843 |
1.3098 | 7.0 | 7000 | 1.8317 | 0.7625 | 0.3515 | 2.0367 | 0.7625 | 0.7668 | 0.1039 | 0.0794 |
1.1854 | 8.0 | 8000 | 1.8872 | 0.7675 | 0.3589 | 2.1085 | 0.7675 | 0.7661 | 0.1294 | 0.0694 |
1.1066 | 9.0 | 9000 | 1.9843 | 0.7642 | 0.3707 | 2.1492 | 0.7642 | 0.7670 | 0.1457 | 0.0715 |
1.0518 | 10.0 | 10000 | 1.9993 | 0.77 | 0.3660 | 2.0694 | 0.7700 | 0.7702 | 0.1440 | 0.0695 |
0.9741 | 11.0 | 11000 | 2.2346 | 0.769 | 0.3870 | 2.0588 | 0.769 | 0.7704 | 0.1748 | 0.0735 |
0.938 | 12.0 | 12000 | 2.2626 | 0.767 | 0.3918 | 2.1412 | 0.767 | 0.7679 | 0.1774 | 0.0723 |
0.899 | 13.0 | 13000 | 2.3671 | 0.7698 | 0.3995 | 2.1064 | 0.7698 | 0.7725 | 0.1820 | 0.0708 |
0.8708 | 14.0 | 14000 | 2.3386 | 0.7768 | 0.3838 | 2.1948 | 0.7768 | 0.7777 | 0.1724 | 0.0683 |
0.8456 | 15.0 | 15000 | 2.3234 | 0.7827 | 0.3774 | 2.0937 | 0.7828 | 0.7830 | 0.1752 | 0.0638 |
0.8021 | 16.0 | 16000 | 2.5700 | 0.7685 | 0.4092 | 2.1458 | 0.7685 | 0.7684 | 0.1911 | 0.0717 |
0.7921 | 17.0 | 17000 | 2.5721 | 0.778 | 0.3934 | 2.1774 | 0.778 | 0.7756 | 0.1829 | 0.0708 |
0.7779 | 18.0 | 18000 | 2.7204 | 0.772 | 0.4089 | 2.1145 | 0.772 | 0.7707 | 0.1926 | 0.0758 |
0.7484 | 19.0 | 19000 | 2.7208 | 0.7752 | 0.4044 | 2.1020 | 0.7752 | 0.7760 | 0.1901 | 0.0746 |
0.7469 | 20.0 | 20000 | 2.5898 | 0.7927 | 0.3711 | 2.2076 | 0.7927 | 0.7909 | 0.1763 | 0.0648 |
0.7256 | 21.0 | 21000 | 2.5658 | 0.791 | 0.3727 | 2.0710 | 0.791 | 0.7920 | 0.1763 | 0.0650 |
0.7137 | 22.0 | 22000 | 2.6782 | 0.7847 | 0.3851 | 2.1469 | 0.7847 | 0.7854 | 0.1824 | 0.0703 |
0.6912 | 23.0 | 23000 | 2.5574 | 0.802 | 0.3539 | 2.1340 | 0.802 | 0.8009 | 0.1685 | 0.0615 |
0.6894 | 24.0 | 24000 | 2.6331 | 0.7913 | 0.3760 | 2.0913 | 0.7913 | 0.7944 | 0.1807 | 0.0674 |
0.6692 | 25.0 | 25000 | 2.6074 | 0.7955 | 0.3658 | 2.0837 | 0.7955 | 0.7975 | 0.1745 | 0.0645 |
0.6541 | 26.0 | 26000 | 2.6059 | 0.7945 | 0.3672 | 2.0798 | 0.7945 | 0.7936 | 0.1751 | 0.0616 |
0.6517 | 27.0 | 27000 | 2.7149 | 0.7965 | 0.3697 | 2.0842 | 0.7965 | 0.7987 | 0.1769 | 0.0663 |
0.6484 | 28.0 | 28000 | 2.5700 | 0.8047 | 0.3542 | 2.0142 | 0.8047 | 0.8058 | 0.1685 | 0.0597 |
0.6342 | 29.0 | 29000 | 2.6774 | 0.7987 | 0.3660 | 2.1231 | 0.7987 | 0.7972 | 0.1759 | 0.0622 |
0.6331 | 30.0 | 30000 | 2.6112 | 0.7973 | 0.3621 | 2.0740 | 0.7973 | 0.7981 | 0.1752 | 0.0621 |
0.6204 | 31.0 | 31000 | 2.6470 | 0.807 | 0.3521 | 2.0337 | 0.807 | 0.8056 | 0.1683 | 0.0638 |
0.612 | 32.0 | 32000 | 2.6265 | 0.8053 | 0.3549 | 2.0800 | 0.8053 | 0.8038 | 0.1678 | 0.0596 |
0.6049 | 33.0 | 33000 | 2.5749 | 0.8107 | 0.3428 | 2.0235 | 0.8108 | 0.8114 | 0.1662 | 0.0576 |
0.5984 | 34.0 | 34000 | 2.6667 | 0.804 | 0.3572 | 2.1015 | 0.804 | 0.8041 | 0.1726 | 0.0632 |
0.5961 | 35.0 | 35000 | 2.6481 | 0.8067 | 0.3521 | 2.0652 | 0.8067 | 0.8068 | 0.1673 | 0.0610 |
0.5958 | 36.0 | 36000 | 2.6831 | 0.8065 | 0.3523 | 2.0272 | 0.8065 | 0.8074 | 0.1681 | 0.0623 |
0.5836 | 37.0 | 37000 | 2.6573 | 0.8067 | 0.3533 | 2.0149 | 0.8067 | 0.8050 | 0.1699 | 0.0624 |
0.5855 | 38.0 | 38000 | 2.6730 | 0.8087 | 0.3510 | 2.0149 | 0.8087 | 0.8087 | 0.1693 | 0.0611 |
0.581 | 39.0 | 39000 | 2.6464 | 0.815 | 0.3390 | 2.0609 | 0.815 | 0.8148 | 0.1628 | 0.0588 |
0.5708 | 40.0 | 40000 | 2.7165 | 0.8077 | 0.3515 | 2.0489 | 0.8077 | 0.8078 | 0.1698 | 0.0644 |
0.5727 | 41.0 | 41000 | 2.6264 | 0.8135 | 0.3402 | 2.0070 | 0.8135 | 0.8130 | 0.1643 | 0.0601 |
0.5688 | 42.0 | 42000 | 2.6522 | 0.8077 | 0.3522 | 2.0064 | 0.8077 | 0.8076 | 0.1687 | 0.0615 |
0.5648 | 43.0 | 43000 | 2.5806 | 0.8193 | 0.3295 | 2.0211 | 0.8193 | 0.8188 | 0.1593 | 0.0585 |
0.5649 | 44.0 | 44000 | 2.6182 | 0.8125 | 0.3372 | 2.0292 | 0.8125 | 0.8122 | 0.1630 | 0.0598 |
0.562 | 45.0 | 45000 | 2.6274 | 0.8157 | 0.3366 | 2.0047 | 0.8157 | 0.8158 | 0.1610 | 0.0577 |
0.5592 | 46.0 | 46000 | 2.6069 | 0.8145 | 0.3370 | 2.0276 | 0.8145 | 0.8146 | 0.1632 | 0.0599 |
0.5582 | 47.0 | 47000 | 2.5935 | 0.8187 | 0.3331 | 2.0291 | 0.8187 | 0.8193 | 0.1594 | 0.0588 |
0.5565 | 48.0 | 48000 | 2.5780 | 0.8197 | 0.3302 | 2.0401 | 0.8197 | 0.8197 | 0.1580 | 0.0577 |
0.5571 | 49.0 | 49000 | 2.5781 | 0.8185 | 0.3294 | 2.0367 | 0.8185 | 0.8184 | 0.1590 | 0.0583 |
0.5568 | 50.0 | 50000 | 2.5793 | 0.8185 | 0.3293 | 2.0402 | 0.8185 | 0.8184 | 0.1589 | 0.0584 |
Framework versions
- Transformers 4.26.1
- Pytorch 1.13.1.post200
- Datasets 2.9.0
- Tokenizers 0.13.2