<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. -->
dit-base-small_rvl_cdip-NK1000_hint
This model is a fine-tuned version of WinKawaks/vit-small-patch16-224 on the None dataset. It achieves the following results on the evaluation set:
- Loss: 2.2813
- Accuracy: 0.841
- Brier Loss: 0.2948
- Nll: 1.9789
- F1 Micro: 0.841
- F1 Macro: 0.8409
- Ece: 0.1435
- Aurc: 0.0496
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 50
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | Brier Loss | Nll | F1 Micro | F1 Macro | Ece | Aurc |
---|---|---|---|---|---|---|---|---|---|---|
2.5147 | 1.0 | 1000 | 2.3332 | 0.659 | 0.4557 | 2.1792 | 0.659 | 0.6434 | 0.0525 | 0.1283 |
2.0194 | 2.0 | 2000 | 1.9888 | 0.7225 | 0.3793 | 2.1426 | 0.7225 | 0.7275 | 0.0522 | 0.0910 |
1.7429 | 3.0 | 3000 | 1.8097 | 0.759 | 0.3332 | 1.9995 | 0.7590 | 0.7599 | 0.0480 | 0.0713 |
1.5665 | 4.0 | 4000 | 1.8189 | 0.7652 | 0.3417 | 2.0345 | 0.7652 | 0.7676 | 0.0920 | 0.0706 |
1.4286 | 5.0 | 5000 | 1.7489 | 0.7588 | 0.3435 | 2.0233 | 0.7588 | 0.7639 | 0.0654 | 0.0745 |
1.3258 | 6.0 | 6000 | 1.7223 | 0.7837 | 0.3212 | 1.9911 | 0.7837 | 0.7818 | 0.0939 | 0.0595 |
1.1929 | 7.0 | 7000 | 1.6777 | 0.8015 | 0.3090 | 1.9764 | 0.8015 | 0.8045 | 0.0991 | 0.0554 |
1.0707 | 8.0 | 8000 | 1.8240 | 0.79 | 0.3365 | 1.9708 | 0.79 | 0.7907 | 0.1334 | 0.0588 |
1.0054 | 9.0 | 9000 | 1.9355 | 0.7853 | 0.3482 | 2.0445 | 0.7853 | 0.7861 | 0.1404 | 0.0637 |
0.924 | 10.0 | 10000 | 2.0125 | 0.799 | 0.3399 | 2.0334 | 0.799 | 0.7993 | 0.1471 | 0.0584 |
0.9043 | 11.0 | 11000 | 1.9868 | 0.8075 | 0.3252 | 2.0171 | 0.8075 | 0.8078 | 0.1429 | 0.0526 |
0.8442 | 12.0 | 12000 | 2.1626 | 0.8087 | 0.3339 | 2.0839 | 0.8087 | 0.8075 | 0.1523 | 0.0534 |
0.8158 | 13.0 | 13000 | 2.1123 | 0.7903 | 0.3567 | 2.0193 | 0.7903 | 0.7922 | 0.1592 | 0.0580 |
0.8087 | 14.0 | 14000 | 2.1296 | 0.814 | 0.3269 | 2.0417 | 0.8140 | 0.8152 | 0.1482 | 0.0533 |
0.7924 | 15.0 | 15000 | 2.0768 | 0.816 | 0.3181 | 2.1244 | 0.816 | 0.8152 | 0.1435 | 0.0500 |
0.7574 | 16.0 | 16000 | 2.3326 | 0.797 | 0.3596 | 2.1292 | 0.797 | 0.7960 | 0.1668 | 0.0590 |
0.7501 | 17.0 | 17000 | 2.3190 | 0.8067 | 0.3475 | 2.0635 | 0.8067 | 0.8106 | 0.1617 | 0.0588 |
0.7097 | 18.0 | 18000 | 2.3543 | 0.8067 | 0.3468 | 2.0987 | 0.8067 | 0.8063 | 0.1636 | 0.0561 |
0.6939 | 19.0 | 19000 | 2.3151 | 0.8067 | 0.3405 | 2.0927 | 0.8067 | 0.8047 | 0.1617 | 0.0546 |
0.6972 | 20.0 | 20000 | 2.3289 | 0.8087 | 0.3409 | 2.0291 | 0.8087 | 0.8113 | 0.1628 | 0.0550 |
0.6869 | 21.0 | 21000 | 2.3878 | 0.797 | 0.3567 | 2.0736 | 0.797 | 0.7995 | 0.1727 | 0.0599 |
0.6621 | 22.0 | 22000 | 2.3796 | 0.8137 | 0.3323 | 2.1080 | 0.8137 | 0.8138 | 0.1570 | 0.0553 |
0.6496 | 23.0 | 23000 | 2.4264 | 0.8143 | 0.3342 | 2.0650 | 0.8143 | 0.8182 | 0.1598 | 0.0562 |
0.6478 | 24.0 | 24000 | 2.3300 | 0.8167 | 0.3313 | 2.0509 | 0.8167 | 0.8170 | 0.1564 | 0.0552 |
0.6184 | 25.0 | 25000 | 2.3143 | 0.8283 | 0.3178 | 1.9842 | 0.8283 | 0.8284 | 0.1498 | 0.0509 |
0.6203 | 26.0 | 26000 | 2.3665 | 0.825 | 0.3181 | 2.0647 | 0.825 | 0.8246 | 0.1501 | 0.0530 |
0.6151 | 27.0 | 27000 | 2.2673 | 0.8335 | 0.3042 | 1.9961 | 0.8335 | 0.8351 | 0.1431 | 0.0501 |
0.6054 | 28.0 | 28000 | 2.2927 | 0.8283 | 0.3100 | 2.0229 | 0.8283 | 0.8281 | 0.1490 | 0.0508 |
0.5965 | 29.0 | 29000 | 2.4001 | 0.8223 | 0.3235 | 2.0393 | 0.8223 | 0.8266 | 0.1553 | 0.0536 |
0.5869 | 30.0 | 30000 | 2.4167 | 0.821 | 0.3269 | 1.9890 | 0.821 | 0.8213 | 0.1576 | 0.0553 |
0.5852 | 31.0 | 31000 | 2.4030 | 0.83 | 0.3120 | 2.0384 | 0.83 | 0.8304 | 0.1500 | 0.0539 |
0.5741 | 32.0 | 32000 | 2.4800 | 0.8233 | 0.3259 | 2.1183 | 0.8233 | 0.8212 | 0.1561 | 0.0550 |
0.5743 | 33.0 | 33000 | 2.4718 | 0.821 | 0.3269 | 2.0593 | 0.821 | 0.8191 | 0.1582 | 0.0578 |
0.5694 | 34.0 | 34000 | 2.3638 | 0.8297 | 0.3135 | 2.0746 | 0.8297 | 0.8293 | 0.1484 | 0.0534 |
0.5567 | 35.0 | 35000 | 2.3320 | 0.8313 | 0.3054 | 2.0498 | 0.8313 | 0.8311 | 0.1470 | 0.0524 |
0.5547 | 36.0 | 36000 | 2.3902 | 0.8293 | 0.3138 | 2.0001 | 0.8293 | 0.8294 | 0.1506 | 0.0513 |
0.55 | 37.0 | 37000 | 2.3812 | 0.822 | 0.3239 | 2.0567 | 0.822 | 0.8226 | 0.1560 | 0.0541 |
0.5482 | 38.0 | 38000 | 2.3680 | 0.8333 | 0.3063 | 2.0447 | 0.8333 | 0.8332 | 0.1460 | 0.0496 |
0.546 | 39.0 | 39000 | 2.3250 | 0.8323 | 0.3051 | 1.9994 | 0.8323 | 0.8315 | 0.1478 | 0.0504 |
0.541 | 40.0 | 40000 | 2.3498 | 0.837 | 0.3003 | 2.0228 | 0.8370 | 0.8367 | 0.1456 | 0.0493 |
0.5448 | 41.0 | 41000 | 2.3504 | 0.833 | 0.3053 | 1.9875 | 0.833 | 0.8323 | 0.1492 | 0.0532 |
0.5365 | 42.0 | 42000 | 2.3421 | 0.8323 | 0.3077 | 2.0985 | 0.8323 | 0.8314 | 0.1477 | 0.0501 |
0.5324 | 43.0 | 43000 | 2.2976 | 0.84 | 0.2929 | 1.9862 | 0.8400 | 0.8403 | 0.1418 | 0.0507 |
0.5326 | 44.0 | 44000 | 2.3270 | 0.838 | 0.2993 | 2.0043 | 0.838 | 0.8384 | 0.1438 | 0.0521 |
0.5303 | 45.0 | 45000 | 2.2919 | 0.839 | 0.2957 | 1.9625 | 0.839 | 0.8395 | 0.1430 | 0.0494 |
0.5276 | 46.0 | 46000 | 2.2861 | 0.8397 | 0.2973 | 1.9382 | 0.8397 | 0.8402 | 0.1442 | 0.0512 |
0.5279 | 47.0 | 47000 | 2.2930 | 0.8387 | 0.2962 | 1.9738 | 0.8387 | 0.8384 | 0.1456 | 0.0499 |
0.5251 | 48.0 | 48000 | 2.2841 | 0.84 | 0.2950 | 1.9888 | 0.8400 | 0.8399 | 0.1441 | 0.0490 |
0.5257 | 49.0 | 49000 | 2.2802 | 0.84 | 0.2950 | 1.9827 | 0.8400 | 0.8400 | 0.1443 | 0.0491 |
0.5232 | 50.0 | 50000 | 2.2813 | 0.841 | 0.2948 | 1.9789 | 0.841 | 0.8409 | 0.1435 | 0.0496 |
Framework versions
- Transformers 4.26.1
- Pytorch 1.13.1.post200
- Datasets 2.9.0
- Tokenizers 0.13.2