<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. -->
baseline_xlnet-large-cased_epoch1_batch1_lr2e-05_w0.01
This model is a fine-tuned version of xlnet-large-cased on the None dataset. It achieves the following results on the evaluation set:
- Loss: 1.9656
- Accuracy: 0.6274
- F1: 0.0
- Precision: 0.0
- Recall: 0.0
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 1
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall |
---|---|---|---|---|---|---|---|
1.9638 | 1.0 | 3149 | 1.9656 | 0.6274 | 0.0 | 0.0 | 0.0 |
Framework versions
- Transformers 4.31.0
- Pytorch 2.0.1+cu118
- Datasets 2.14.2
- Tokenizers 0.13.3