<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. -->
mt5-large-gramatika161k-b16-e10-lr0.001
This model is a fine-tuned version of google/mt5-large on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.1537
- Rouge1: 70.8264
- Rouge2: 64.518
- Rougel: 70.6934
- Rougelsum: 70.6881
- Gen Len: 18.3298
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.001
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adafactor
- lr_scheduler_type: linear
- num_epochs: 10
Training results
Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len |
---|---|---|---|---|---|---|---|---|
0.3641 | 0.63 | 5000 | 0.1944 | 69.4204 | 61.9635 | 69.2556 | 69.2477 | 18.3389 |
0.1843 | 1.27 | 10000 | 0.1655 | 70.3343 | 63.6924 | 70.1851 | 70.1815 | 18.3377 |
0.1359 | 1.9 | 15000 | 0.1537 | 70.8264 | 64.518 | 70.6934 | 70.6881 | 18.3298 |
0.0912 | 2.54 | 20000 | 0.1643 | 71.037 | 64.8861 | 70.9075 | 70.9027 | 18.3295 |
0.0759 | 3.17 | 25000 | 0.1694 | 71.288 | 65.3505 | 71.1746 | 71.1675 | 18.3314 |
0.054 | 3.81 | 30000 | 0.1672 | 71.4356 | 65.5825 | 71.3263 | 71.3199 | 18.3294 |
0.0398 | 4.44 | 35000 | 0.1779 | 71.4473 | 65.6798 | 71.343 | 71.3354 | 18.3341 |
0.0331 | 5.08 | 40000 | 0.1908 | 71.615 | 65.9285 | 71.5126 | 71.4982 | 18.3344 |
0.021 | 5.71 | 45000 | 0.2025 | 71.6252 | 65.9628 | 71.5172 | 71.513 | 18.3317 |
0.0167 | 6.35 | 50000 | 0.2107 | 71.6508 | 66.0666 | 71.5547 | 71.542 | 18.3366 |
0.0126 | 6.98 | 55000 | 0.2084 | 71.8403 | 66.3396 | 71.7392 | 71.735 | 18.3337 |
0.0072 | 7.62 | 60000 | 0.2256 | 71.8659 | 66.388 | 71.7699 | 71.7644 | 18.3330 |
0.0057 | 8.25 | 65000 | 0.2578 | 71.9226 | 66.4948 | 71.8279 | 71.8162 | 18.3313 |
0.0036 | 8.88 | 70000 | 0.2784 | 71.9279 | 66.5248 | 71.8258 | 71.8149 | 18.3324 |
0.0021 | 9.52 | 75000 | 0.3040 | 71.9913 | 66.634 | 71.893 | 71.8844 | 18.3317 |
Framework versions
- Transformers 4.30.1
- Pytorch 1.11.0a0+b6df043
- Datasets 2.12.0
- Tokenizers 0.13.3