<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. -->
distilhubert-finetuned-gtzan
This model is a fine-tuned version of ntu-spml/distilhubert on the GTZAN dataset. It achieves the following results on the evaluation set:
- Loss: 0.6210
- Accuracy: 0.87
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 15
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
2.1281 | 1.0 | 113 | 1.9810 | 0.46 |
1.4934 | 2.0 | 226 | 1.3605 | 0.62 |
1.1668 | 3.0 | 339 | 0.9967 | 0.75 |
0.9904 | 4.0 | 452 | 0.8179 | 0.74 |
0.7369 | 5.0 | 565 | 0.6686 | 0.84 |
0.5161 | 6.0 | 678 | 0.6022 | 0.8 |
0.5269 | 7.0 | 791 | 0.5942 | 0.85 |
0.2076 | 8.0 | 904 | 0.5678 | 0.86 |
0.3907 | 9.0 | 1017 | 0.5466 | 0.85 |
0.2112 | 10.0 | 1130 | 0.5610 | 0.86 |
0.0678 | 11.0 | 1243 | 0.5933 | 0.87 |
0.063 | 12.0 | 1356 | 0.6582 | 0.81 |
0.0342 | 13.0 | 1469 | 0.6052 | 0.88 |
0.0209 | 14.0 | 1582 | 0.6139 | 0.88 |
0.021 | 15.0 | 1695 | 0.6210 | 0.87 |
Framework versions
- Transformers 4.31.0
- Pytorch 2.0.1+cu118
- Datasets 2.14.3
- Tokenizers 0.13.3