<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. -->
finetuning-bert-sentiment-reviews-2
This model is a fine-tuned version of distilbert-base-uncased on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.2086
- Accuracy: 0.9308
- F1: 0.8368
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3.0
Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | 
|---|---|---|---|---|---|
| No log | 0.01 | 10 | 0.6716 | 0.7463 | 0.2849 | 
| No log | 0.03 | 20 | 0.5789 | 0.7463 | 0.2849 | 
| No log | 0.04 | 30 | 0.4971 | 0.7788 | 0.3849 | 
| No log | 0.06 | 40 | 0.4298 | 0.8672 | 0.5506 | 
| No log | 0.07 | 50 | 0.3837 | 0.8794 | 0.5686 | 
| No log | 0.09 | 60 | 0.3481 | 0.8802 | 0.5672 | 
| No log | 0.1 | 70 | 0.3680 | 0.8757 | 0.5604 | 
| No log | 0.12 | 80 | 0.3259 | 0.8854 | 0.5736 | 
| No log | 0.13 | 90 | 0.3179 | 0.8854 | 0.5727 | 
| No log | 0.15 | 100 | 0.3306 | 0.8891 | 0.6295 | 
| No log | 0.16 | 110 | 0.3253 | 0.8894 | 0.6692 | 
| No log | 0.18 | 120 | 0.3041 | 0.9024 | 0.7285 | 
| No log | 0.19 | 130 | 0.2997 | 0.9068 | 0.7426 | 
| No log | 0.21 | 140 | 0.2881 | 0.9057 | 0.7434 | 
| No log | 0.22 | 150 | 0.2892 | 0.9094 | 0.7587 | 
| No log | 0.24 | 160 | 0.2771 | 0.9149 | 0.7801 | 
| No log | 0.25 | 170 | 0.2779 | 0.9135 | 0.7782 | 
| No log | 0.27 | 180 | 0.2992 | 0.9109 | 0.7720 | 
| No log | 0.28 | 190 | 0.2809 | 0.9083 | 0.7622 | 
| No log | 0.3 | 200 | 0.2636 | 0.9146 | 0.7680 | 
| No log | 0.31 | 210 | 0.3381 | 0.9079 | 0.7694 | 
| No log | 0.33 | 220 | 0.2661 | 0.9197 | 0.7858 | 
| No log | 0.34 | 230 | 0.3377 | 0.8854 | 0.7582 | 
| No log | 0.36 | 240 | 0.2614 | 0.9190 | 0.7881 | 
| No log | 0.37 | 250 | 0.2459 | 0.9264 | 0.7981 | 
| No log | 0.38 | 260 | 0.2490 | 0.9246 | 0.7934 | 
| No log | 0.4 | 270 | 0.2475 | 0.9197 | 0.7876 | 
| No log | 0.41 | 280 | 0.2648 | 0.9161 | 0.7840 | 
| No log | 0.43 | 290 | 0.2533 | 0.9249 | 0.8010 | 
| No log | 0.44 | 300 | 0.2446 | 0.9234 | 0.8067 | 
| No log | 0.46 | 310 | 0.2271 | 0.9260 | 0.8114 | 
| No log | 0.47 | 320 | 0.2219 | 0.9246 | 0.8211 | 
| No log | 0.49 | 330 | 0.2269 | 0.9320 | 0.8306 | 
| No log | 0.5 | 340 | 0.2276 | 0.9264 | 0.8219 | 
| No log | 0.52 | 350 | 0.2835 | 0.9201 | 0.7994 | 
| No log | 0.53 | 360 | 0.2787 | 0.9231 | 0.8029 | 
| No log | 0.55 | 370 | 0.2317 | 0.9301 | 0.8275 | 
| No log | 0.56 | 380 | 0.2502 | 0.9131 | 0.8076 | 
| No log | 0.58 | 390 | 0.2254 | 0.9294 | 0.8321 | 
| No log | 0.59 | 400 | 0.2066 | 0.9312 | 0.8215 | 
| No log | 0.61 | 410 | 0.2013 | 0.9342 | 0.8391 | 
| No log | 0.62 | 420 | 0.2295 | 0.9260 | 0.8279 | 
| No log | 0.64 | 430 | 0.2100 | 0.9338 | 0.8428 | 
| No log | 0.65 | 440 | 0.2129 | 0.9316 | 0.8297 | 
| No log | 0.67 | 450 | 0.2135 | 0.9327 | 0.8203 | 
| No log | 0.68 | 460 | 0.2681 | 0.9212 | 0.8028 | 
| No log | 0.7 | 470 | 0.2178 | 0.9320 | 0.8312 | 
| No log | 0.71 | 480 | 0.1999 | 0.9342 | 0.8321 | 
| No log | 0.72 | 490 | 0.2172 | 0.9305 | 0.8334 | 
| 0.2988 | 0.74 | 500 | 0.2086 | 0.9308 | 0.8368 | 
| 0.2988 | 0.75 | 510 | 0.2052 | 0.9342 | 0.8430 | 
| 0.2988 | 0.77 | 520 | 0.2111 | 0.9331 | 0.8333 | 
| 0.2988 | 0.78 | 530 | 0.2279 | 0.9327 | 0.8250 | 
| 0.2988 | 0.8 | 540 | 0.2361 | 0.9271 | 0.8164 | 
Framework versions
- Transformers 4.29.2
- Pytorch 1.13.1+cu117
- Datasets 2.12.0
- Tokenizers 0.13.3
 
       
      