<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. -->
perioli_vgm_v7.3
This model is a fine-tuned version of microsoft/layoutlmv3-base on the sroie dataset. It achieves the following results on the evaluation set:
- Loss: 0.0417
- Precision: 0.8615
- Recall: 0.8627
- F1: 0.8621
- Accuracy: 0.9943
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- training_steps: 4000
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
No log | 0.38 | 100 | 0.1302 | 0.1887 | 0.0560 | 0.0864 | 0.9666 |
No log | 0.75 | 200 | 0.0878 | 0.5105 | 0.5112 | 0.5108 | 0.9748 |
No log | 1.13 | 300 | 0.0606 | 0.7148 | 0.5826 | 0.6420 | 0.9841 |
No log | 1.5 | 400 | 0.0663 | 0.5834 | 0.7003 | 0.6365 | 0.9810 |
0.0962 | 1.88 | 500 | 0.0503 | 0.7165 | 0.7185 | 0.7175 | 0.9866 |
0.0962 | 2.26 | 600 | 0.0596 | 0.6521 | 0.7535 | 0.6992 | 0.9845 |
0.0962 | 2.63 | 700 | 0.0429 | 0.8021 | 0.7325 | 0.7657 | 0.9901 |
0.0962 | 3.01 | 800 | 0.0413 | 0.7520 | 0.7815 | 0.7665 | 0.9891 |
0.0962 | 3.38 | 900 | 0.0425 | 0.7517 | 0.7969 | 0.7736 | 0.9891 |
0.0267 | 3.76 | 1000 | 0.0337 | 0.8496 | 0.7913 | 0.8194 | 0.9922 |
0.0267 | 4.14 | 1100 | 0.0377 | 0.7894 | 0.8137 | 0.8014 | 0.9908 |
0.0267 | 4.51 | 1200 | 0.0334 | 0.8355 | 0.8249 | 0.8302 | 0.9925 |
0.0267 | 4.89 | 1300 | 0.0346 | 0.8338 | 0.8361 | 0.8350 | 0.9928 |
0.0267 | 5.26 | 1400 | 0.0360 | 0.8549 | 0.8249 | 0.8396 | 0.9930 |
0.0118 | 5.64 | 1500 | 0.0361 | 0.8580 | 0.8375 | 0.8476 | 0.9935 |
0.0118 | 6.02 | 1600 | 0.0371 | 0.8505 | 0.8445 | 0.8475 | 0.9934 |
0.0118 | 6.39 | 1700 | 0.0367 | 0.8358 | 0.8557 | 0.8457 | 0.9930 |
0.0118 | 6.77 | 1800 | 0.0364 | 0.8178 | 0.8361 | 0.8269 | 0.9924 |
0.0118 | 7.14 | 1900 | 0.0396 | 0.7893 | 0.8291 | 0.8087 | 0.9915 |
0.0075 | 7.52 | 2000 | 0.0374 | 0.8470 | 0.8529 | 0.8500 | 0.9934 |
0.0075 | 7.89 | 2100 | 0.0402 | 0.8229 | 0.8263 | 0.8246 | 0.9924 |
0.0075 | 8.27 | 2200 | 0.0400 | 0.8436 | 0.8613 | 0.8524 | 0.9937 |
0.0075 | 8.65 | 2300 | 0.0403 | 0.8288 | 0.8473 | 0.8380 | 0.9931 |
0.0075 | 9.02 | 2400 | 0.0380 | 0.8664 | 0.8627 | 0.8646 | 0.9941 |
0.0039 | 9.4 | 2500 | 0.0401 | 0.8351 | 0.8585 | 0.8467 | 0.9933 |
0.0039 | 9.77 | 2600 | 0.0398 | 0.8317 | 0.8445 | 0.8381 | 0.9929 |
0.0039 | 10.15 | 2700 | 0.0402 | 0.8506 | 0.8613 | 0.8559 | 0.9938 |
0.0039 | 10.53 | 2800 | 0.0396 | 0.8573 | 0.8754 | 0.8663 | 0.9940 |
0.0039 | 10.9 | 2900 | 0.0371 | 0.8766 | 0.8655 | 0.8710 | 0.9944 |
0.0023 | 11.28 | 3000 | 0.0394 | 0.8482 | 0.8529 | 0.8506 | 0.9936 |
0.0023 | 11.65 | 3100 | 0.0414 | 0.8359 | 0.8487 | 0.8423 | 0.9934 |
0.0023 | 12.03 | 3200 | 0.0412 | 0.8469 | 0.8599 | 0.8534 | 0.9938 |
0.0023 | 12.41 | 3300 | 0.0410 | 0.8524 | 0.8655 | 0.8589 | 0.9940 |
0.0023 | 12.78 | 3400 | 0.0415 | 0.8508 | 0.8543 | 0.8526 | 0.9939 |
0.0015 | 13.16 | 3500 | 0.0423 | 0.8267 | 0.8487 | 0.8376 | 0.9932 |
0.0015 | 13.53 | 3600 | 0.0416 | 0.8536 | 0.8571 | 0.8553 | 0.9940 |
0.0015 | 13.91 | 3700 | 0.0423 | 0.8497 | 0.8627 | 0.8562 | 0.9940 |
0.0015 | 14.29 | 3800 | 0.0419 | 0.8664 | 0.8627 | 0.8646 | 0.9944 |
0.0015 | 14.66 | 3900 | 0.0416 | 0.8615 | 0.8627 | 0.8621 | 0.9943 |
0.0009 | 15.04 | 4000 | 0.0417 | 0.8615 | 0.8627 | 0.8621 | 0.9943 |
Framework versions
- Transformers 4.28.0
- Pytorch 2.0.1+cu118
- Datasets 2.2.2
- Tokenizers 0.13.3