<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. -->
vit-base_rvl-cdip-small_rvl_cdip-NK1000_kd_CEKD_t2.5_a0.5_rand
This model is a fine-tuned version of google/vit-base-patch16-224-in21k on the None dataset. It achieves the following results on the evaluation set:
- Loss: 1.9130
- Accuracy: 0.6115
- Brier Loss: 0.5924
- Nll: 2.8591
- F1 Micro: 0.6115
- F1 Macro: 0.6137
- Ece: 0.2201
- Aurc: 0.1762
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 50
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | Brier Loss | Nll | F1 Micro | F1 Macro | Ece | Aurc |
---|---|---|---|---|---|---|---|---|---|---|
4.0737 | 1.0 | 1000 | 3.8362 | 0.1948 | 0.8785 | 4.2153 | 0.1948 | 0.1339 | 0.0877 | 0.6770 |
3.2534 | 2.0 | 2000 | 3.0129 | 0.3772 | 0.7858 | 3.2453 | 0.3773 | 0.3171 | 0.1532 | 0.4263 |
2.802 | 3.0 | 3000 | 2.6716 | 0.4472 | 0.7236 | 3.0740 | 0.4472 | 0.4150 | 0.1479 | 0.3537 |
2.5803 | 4.0 | 4000 | 2.4882 | 0.4775 | 0.6581 | 2.9147 | 0.4775 | 0.4658 | 0.0774 | 0.2981 |
2.4445 | 5.0 | 5000 | 2.3888 | 0.4753 | 0.6741 | 2.8504 | 0.4753 | 0.4562 | 0.1529 | 0.2912 |
2.2315 | 6.0 | 6000 | 2.2439 | 0.5132 | 0.6404 | 2.7536 | 0.5132 | 0.5007 | 0.1179 | 0.2659 |
2.0849 | 7.0 | 7000 | 2.2140 | 0.5125 | 0.6441 | 2.8160 | 0.5125 | 0.5119 | 0.1522 | 0.2634 |
1.922 | 8.0 | 8000 | 2.0941 | 0.5298 | 0.6202 | 2.7843 | 0.5298 | 0.5267 | 0.1511 | 0.2384 |
1.8235 | 9.0 | 9000 | 2.0477 | 0.5453 | 0.5974 | 2.6273 | 0.5453 | 0.5505 | 0.1131 | 0.2252 |
1.6864 | 10.0 | 10000 | 2.0429 | 0.5575 | 0.6181 | 2.7309 | 0.5575 | 0.5391 | 0.1828 | 0.2172 |
1.5498 | 11.0 | 11000 | 2.0547 | 0.5597 | 0.6272 | 2.6772 | 0.5597 | 0.5444 | 0.1931 | 0.2237 |
1.4502 | 12.0 | 12000 | 2.0086 | 0.5707 | 0.6175 | 2.7419 | 0.5707 | 0.5592 | 0.1935 | 0.2153 |
1.3331 | 13.0 | 13000 | 2.0399 | 0.566 | 0.6150 | 2.8462 | 0.566 | 0.5660 | 0.1786 | 0.2175 |
1.19 | 14.0 | 14000 | 2.0207 | 0.5805 | 0.6209 | 2.7599 | 0.5805 | 0.5793 | 0.2133 | 0.2081 |
1.0615 | 15.0 | 15000 | 2.0089 | 0.5793 | 0.6224 | 2.9014 | 0.5793 | 0.5787 | 0.2157 | 0.2077 |
0.9517 | 16.0 | 16000 | 2.0644 | 0.5765 | 0.6300 | 2.9717 | 0.5765 | 0.5796 | 0.2264 | 0.2047 |
0.8343 | 17.0 | 17000 | 2.0990 | 0.5745 | 0.6473 | 3.0444 | 0.5745 | 0.5712 | 0.2502 | 0.2050 |
0.7191 | 18.0 | 18000 | 2.1704 | 0.5763 | 0.6527 | 3.0809 | 0.5763 | 0.5721 | 0.2539 | 0.2125 |
0.638 | 19.0 | 19000 | 2.1930 | 0.5807 | 0.6572 | 3.1618 | 0.5807 | 0.5792 | 0.2620 | 0.2120 |
0.5528 | 20.0 | 20000 | 2.1731 | 0.5885 | 0.6542 | 3.1412 | 0.5885 | 0.5898 | 0.2627 | 0.2067 |
0.4957 | 21.0 | 21000 | 2.2492 | 0.5763 | 0.6708 | 3.1701 | 0.5763 | 0.5760 | 0.2700 | 0.2232 |
0.4096 | 22.0 | 22000 | 2.3164 | 0.5707 | 0.6837 | 3.3874 | 0.5707 | 0.5706 | 0.2761 | 0.2260 |
0.3915 | 23.0 | 23000 | 2.3277 | 0.58 | 0.6813 | 3.4230 | 0.58 | 0.5814 | 0.2857 | 0.2165 |
0.3412 | 24.0 | 24000 | 2.2947 | 0.5813 | 0.6779 | 3.3373 | 0.5813 | 0.5854 | 0.2870 | 0.2076 |
0.3171 | 25.0 | 25000 | 2.2743 | 0.586 | 0.6720 | 3.3310 | 0.586 | 0.5848 | 0.2767 | 0.2104 |
0.2734 | 26.0 | 26000 | 2.2762 | 0.593 | 0.6696 | 3.3439 | 0.593 | 0.5977 | 0.2819 | 0.2044 |
0.2535 | 27.0 | 27000 | 2.2205 | 0.5845 | 0.6605 | 3.2712 | 0.5845 | 0.5864 | 0.2684 | 0.2060 |
0.229 | 28.0 | 28000 | 2.2961 | 0.5845 | 0.6821 | 3.2738 | 0.5845 | 0.5902 | 0.2896 | 0.2106 |
0.2202 | 29.0 | 29000 | 2.2698 | 0.5845 | 0.6752 | 3.2127 | 0.5845 | 0.5845 | 0.2835 | 0.2128 |
0.1922 | 30.0 | 30000 | 2.2511 | 0.5787 | 0.6731 | 3.3305 | 0.5787 | 0.5819 | 0.2770 | 0.2065 |
0.1857 | 31.0 | 31000 | 2.1847 | 0.5863 | 0.6598 | 3.2211 | 0.5863 | 0.5889 | 0.2692 | 0.2036 |
0.1678 | 32.0 | 32000 | 2.1752 | 0.5913 | 0.6551 | 3.0691 | 0.5913 | 0.5926 | 0.2680 | 0.2010 |
0.1587 | 33.0 | 33000 | 2.1107 | 0.5972 | 0.6392 | 3.0412 | 0.5972 | 0.6002 | 0.2495 | 0.2002 |
0.1432 | 34.0 | 34000 | 2.2079 | 0.5893 | 0.6593 | 3.1988 | 0.5893 | 0.5917 | 0.2640 | 0.2092 |
0.1291 | 35.0 | 35000 | 2.0788 | 0.592 | 0.6388 | 2.9891 | 0.592 | 0.5942 | 0.2587 | 0.1887 |
0.1245 | 36.0 | 36000 | 2.0521 | 0.601 | 0.6297 | 2.9432 | 0.601 | 0.6018 | 0.2464 | 0.1923 |
0.1169 | 37.0 | 37000 | 2.0669 | 0.5935 | 0.6294 | 3.0364 | 0.5935 | 0.5932 | 0.2425 | 0.1878 |
0.1068 | 38.0 | 38000 | 2.0197 | 0.606 | 0.6183 | 2.9448 | 0.606 | 0.6054 | 0.2375 | 0.1897 |
0.1031 | 39.0 | 39000 | 2.0022 | 0.6032 | 0.6163 | 2.8697 | 0.6032 | 0.6051 | 0.2429 | 0.1880 |
0.0961 | 40.0 | 40000 | 1.9965 | 0.6058 | 0.6147 | 2.9143 | 0.6058 | 0.6091 | 0.2393 | 0.1859 |
0.093 | 41.0 | 41000 | 1.9735 | 0.6082 | 0.6080 | 2.9346 | 0.6082 | 0.6100 | 0.2331 | 0.1834 |
0.0859 | 42.0 | 42000 | 1.9383 | 0.6092 | 0.6011 | 2.8692 | 0.6092 | 0.6105 | 0.2281 | 0.1792 |
0.0817 | 43.0 | 43000 | 1.9413 | 0.6115 | 0.5999 | 2.8908 | 0.6115 | 0.6124 | 0.2264 | 0.1802 |
0.0779 | 44.0 | 44000 | 1.9271 | 0.6112 | 0.6001 | 2.8695 | 0.6112 | 0.6127 | 0.2274 | 0.1791 |
0.0745 | 45.0 | 45000 | 1.9259 | 0.6135 | 0.5983 | 2.8467 | 0.6135 | 0.6154 | 0.2206 | 0.1786 |
0.0723 | 46.0 | 46000 | 1.9214 | 0.612 | 0.5964 | 2.8289 | 0.612 | 0.6136 | 0.2233 | 0.1778 |
0.0673 | 47.0 | 47000 | 1.9117 | 0.6128 | 0.5923 | 2.8226 | 0.6128 | 0.6148 | 0.2197 | 0.1768 |
0.0649 | 48.0 | 48000 | 1.9111 | 0.6152 | 0.5911 | 2.8575 | 0.6152 | 0.6164 | 0.2166 | 0.1757 |
0.0651 | 49.0 | 49000 | 1.9106 | 0.6148 | 0.5914 | 2.8675 | 0.6148 | 0.6169 | 0.2164 | 0.1761 |
0.0629 | 50.0 | 50000 | 1.9130 | 0.6115 | 0.5924 | 2.8591 | 0.6115 | 0.6137 | 0.2201 | 0.1762 |
Framework versions
- Transformers 4.26.1
- Pytorch 1.13.1.post200
- Datasets 2.9.0
- Tokenizers 0.13.2