<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. -->
vit-base_rvl-cdip-small_rvl_cdip-NK1000_kd_MSE_rand
This model is a fine-tuned version of google/vit-base-patch16-224-in21k on the None dataset. It achieves the following results on the evaluation set:
- Loss: 1.8136
- Accuracy: 0.6262
- Brier Loss: 0.5539
- Nll: 2.6914
- F1 Micro: 0.6262
- F1 Macro: 0.6298
- Ece: 0.1916
- Aurc: 0.1624
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 50
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | Brier Loss | Nll | F1 Micro | F1 Macro | Ece | Aurc |
---|---|---|---|---|---|---|---|---|---|---|
4.1455 | 1.0 | 1000 | 3.9403 | 0.1898 | 0.8859 | 5.5812 | 0.1898 | 0.1327 | 0.0656 | 0.6790 |
3.4397 | 2.0 | 2000 | 3.3498 | 0.346 | 0.8036 | 4.5993 | 0.346 | 0.2909 | 0.1060 | 0.4698 |
2.983 | 3.0 | 3000 | 3.1592 | 0.384 | 0.8070 | 3.7537 | 0.384 | 0.3451 | 0.1795 | 0.4280 |
2.7406 | 4.0 | 4000 | 2.7614 | 0.4447 | 0.6956 | 3.6359 | 0.4447 | 0.4361 | 0.0840 | 0.3307 |
2.5937 | 5.0 | 5000 | 2.7073 | 0.4462 | 0.7000 | 3.5795 | 0.4462 | 0.4321 | 0.1292 | 0.3212 |
2.3878 | 6.0 | 6000 | 2.3935 | 0.5012 | 0.6651 | 3.1888 | 0.5012 | 0.4842 | 0.1429 | 0.2829 |
2.2284 | 7.0 | 7000 | 2.3189 | 0.5022 | 0.6378 | 3.0628 | 0.5022 | 0.5109 | 0.1027 | 0.2630 |
2.0759 | 8.0 | 8000 | 2.3408 | 0.4993 | 0.6550 | 3.3921 | 0.4993 | 0.4923 | 0.1398 | 0.2640 |
1.9764 | 9.0 | 9000 | 2.0531 | 0.5563 | 0.5946 | 2.9188 | 0.5563 | 0.5619 | 0.1202 | 0.2170 |
1.8232 | 10.0 | 10000 | 2.1083 | 0.5505 | 0.6295 | 3.0945 | 0.5505 | 0.5445 | 0.1794 | 0.2322 |
1.7049 | 11.0 | 11000 | 2.0447 | 0.5653 | 0.6142 | 2.9718 | 0.5653 | 0.5605 | 0.1684 | 0.2207 |
1.6182 | 12.0 | 12000 | 2.0684 | 0.5637 | 0.6462 | 3.0100 | 0.5637 | 0.5595 | 0.2095 | 0.2272 |
1.4886 | 13.0 | 13000 | 1.9374 | 0.5735 | 0.6132 | 2.9415 | 0.5735 | 0.5806 | 0.1874 | 0.2042 |
1.3538 | 14.0 | 14000 | 2.0147 | 0.5895 | 0.6174 | 3.0835 | 0.5895 | 0.5851 | 0.1966 | 0.2109 |
1.2304 | 15.0 | 15000 | 1.9766 | 0.5867 | 0.6203 | 3.1471 | 0.5867 | 0.5846 | 0.2229 | 0.2091 |
1.1124 | 16.0 | 16000 | 1.8998 | 0.6008 | 0.6044 | 2.9169 | 0.6008 | 0.5943 | 0.2144 | 0.1911 |
1.0197 | 17.0 | 17000 | 1.9309 | 0.5955 | 0.6123 | 3.1166 | 0.5955 | 0.5979 | 0.2299 | 0.1876 |
0.8763 | 18.0 | 18000 | 1.9741 | 0.5952 | 0.6316 | 3.2227 | 0.5952 | 0.5971 | 0.2439 | 0.1957 |
0.8042 | 19.0 | 19000 | 1.9944 | 0.592 | 0.6318 | 3.1537 | 0.592 | 0.5898 | 0.2439 | 0.2024 |
0.7059 | 20.0 | 20000 | 1.9259 | 0.6082 | 0.6124 | 3.0665 | 0.6082 | 0.6093 | 0.2344 | 0.1889 |
0.632 | 21.0 | 21000 | 1.9444 | 0.6095 | 0.6148 | 3.0133 | 0.6095 | 0.6111 | 0.2281 | 0.1917 |
0.5641 | 22.0 | 22000 | 1.9830 | 0.5968 | 0.6282 | 3.0999 | 0.5968 | 0.5984 | 0.2442 | 0.1913 |
0.5138 | 23.0 | 23000 | 2.0190 | 0.5962 | 0.6331 | 3.1937 | 0.5962 | 0.5966 | 0.2501 | 0.2033 |
0.457 | 24.0 | 24000 | 1.9340 | 0.6075 | 0.6151 | 2.9559 | 0.6075 | 0.6096 | 0.2333 | 0.1888 |
0.3999 | 25.0 | 25000 | 1.9742 | 0.6048 | 0.6285 | 3.0455 | 0.6048 | 0.6080 | 0.2461 | 0.1939 |
0.3629 | 26.0 | 26000 | 1.9308 | 0.6142 | 0.6027 | 3.1686 | 0.6142 | 0.6169 | 0.2244 | 0.1850 |
0.3132 | 27.0 | 27000 | 1.9468 | 0.6175 | 0.6076 | 3.0271 | 0.6175 | 0.6189 | 0.2374 | 0.1863 |
0.2818 | 28.0 | 28000 | 1.9392 | 0.6095 | 0.6152 | 3.0499 | 0.6095 | 0.6079 | 0.2422 | 0.1894 |
0.2584 | 29.0 | 29000 | 1.8976 | 0.6202 | 0.6040 | 2.9355 | 0.6202 | 0.6204 | 0.2340 | 0.1834 |
0.228 | 30.0 | 30000 | 1.9111 | 0.617 | 0.6020 | 3.0272 | 0.617 | 0.6192 | 0.2336 | 0.1780 |
0.2041 | 31.0 | 31000 | 1.8513 | 0.6272 | 0.5835 | 2.8808 | 0.6272 | 0.6293 | 0.2222 | 0.1733 |
0.1834 | 32.0 | 32000 | 1.8501 | 0.6262 | 0.5782 | 2.8280 | 0.6262 | 0.6275 | 0.2142 | 0.1702 |
0.1613 | 33.0 | 33000 | 1.8250 | 0.6292 | 0.5712 | 2.8863 | 0.6292 | 0.6338 | 0.2021 | 0.1691 |
0.1437 | 34.0 | 34000 | 1.8457 | 0.6228 | 0.5773 | 2.9046 | 0.6228 | 0.6232 | 0.2114 | 0.1717 |
0.1275 | 35.0 | 35000 | 1.8088 | 0.6315 | 0.5646 | 2.8124 | 0.6315 | 0.6328 | 0.2039 | 0.1638 |
0.1127 | 36.0 | 36000 | 1.8204 | 0.6335 | 0.5647 | 2.7943 | 0.6335 | 0.6373 | 0.1993 | 0.1661 |
0.1026 | 37.0 | 37000 | 1.8070 | 0.631 | 0.5641 | 2.7537 | 0.631 | 0.6326 | 0.2015 | 0.1634 |
0.0894 | 38.0 | 38000 | 1.8068 | 0.63 | 0.5606 | 2.7461 | 0.63 | 0.6317 | 0.1998 | 0.1634 |
0.0785 | 39.0 | 39000 | 1.7894 | 0.6312 | 0.5550 | 2.7333 | 0.6312 | 0.6351 | 0.1963 | 0.1599 |
0.0696 | 40.0 | 40000 | 1.7996 | 0.6288 | 0.5607 | 2.7489 | 0.6288 | 0.6334 | 0.1986 | 0.1645 |
0.0626 | 41.0 | 41000 | 1.7963 | 0.6328 | 0.5532 | 2.7232 | 0.6328 | 0.6349 | 0.1933 | 0.1632 |
0.055 | 42.0 | 42000 | 1.7959 | 0.6268 | 0.5556 | 2.6877 | 0.6268 | 0.6298 | 0.1957 | 0.1617 |
0.0475 | 43.0 | 43000 | 1.8018 | 0.632 | 0.5522 | 2.7232 | 0.632 | 0.6354 | 0.1934 | 0.1598 |
0.0419 | 44.0 | 44000 | 1.7930 | 0.6325 | 0.5507 | 2.6842 | 0.6325 | 0.6361 | 0.1906 | 0.1612 |
0.0367 | 45.0 | 45000 | 1.8064 | 0.6265 | 0.5577 | 2.6772 | 0.6265 | 0.6299 | 0.1994 | 0.1632 |
0.0328 | 46.0 | 46000 | 1.8044 | 0.6228 | 0.5524 | 2.6611 | 0.6228 | 0.6263 | 0.1971 | 0.1620 |
0.0289 | 47.0 | 47000 | 1.8101 | 0.6248 | 0.5544 | 2.6841 | 0.6248 | 0.6284 | 0.1943 | 0.1624 |
0.0265 | 48.0 | 48000 | 1.8088 | 0.6242 | 0.5531 | 2.6870 | 0.6242 | 0.6283 | 0.1943 | 0.1622 |
0.0238 | 49.0 | 49000 | 1.8107 | 0.6255 | 0.5533 | 2.7007 | 0.6255 | 0.6292 | 0.1923 | 0.1621 |
0.022 | 50.0 | 50000 | 1.8136 | 0.6262 | 0.5539 | 2.6914 | 0.6262 | 0.6298 | 0.1916 | 0.1624 |
Framework versions
- Transformers 4.26.1
- Pytorch 1.13.1.post200
- Datasets 2.9.0
- Tokenizers 0.13.2