<!-- header start --> <!-- 200823 --> <div style="width: auto; margin-left: auto; margin-right: auto"> <img src="https://i.imgur.com/EBdldam.jpg" alt="TheBlokeAI" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> <div style="display: flex; justify-content: space-between; width: 100%;"> <div style="display: flex; flex-direction: column; align-items: flex-start;"> <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://discord.gg/theblokeai">Chat & support: TheBloke's Discord server</a></p> </div> <div style="display: flex; flex-direction: column; align-items: flex-end;"> <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://www.patreon.com/TheBlokeAI">Want to contribute? TheBloke's Patreon page</a></p> </div> </div> <div style="text-align:center; margin-top: 0em; margin-bottom: 0em"><p style="margin-top: 0.25em; margin-bottom: 0em;">TheBloke's LLM work is generously supported by a grant from <a href="https://a16z.com">andreessen horowitz (a16z)</a></p></div> <hr style="margin-top: 1.0em; margin-bottom: 1.0em;"> <!-- header end -->

Orca Mini v3 7B - GPTQ

<!-- description start -->

Description

This repo contains GPTQ model files for Pankaj Mathur's Orca Mini v3 7B.

Multiple GPTQ parameter permutations are provided; see Provided Files below for details of the options provided, their parameters, and the software used to create them.

<!-- description end --> <!-- repositories-available start -->

Repositories available

<!-- prompt-template start -->

Prompt template: orca_mini

### System:
You are an AI assistant that follows instruction extremely well. Help as much as you can.

### User:
{prompt}

### Input:
{input}

### Response:

<!-- prompt-template end --> <!-- licensing start -->

Licensing

The creator of the source model has listed its license as other, and this quantization has therefore used that same license.

As this model is based on Llama 2, it is also subject to the Meta Llama 2 license terms, and the license files for that are additionally included. It should therefore be considered as being claimed to be licensed under both licenses. I contacted Hugging Face for clarification on dual licensing but they do not yet have an official position. Should this change, or should Meta provide any feedback on this situation, I will update this section accordingly.

In the meantime, any questions regarding licensing, and in particular how these two licenses might interact, should be directed to the original model repository: Pankaj Mathur's Orca Mini v3 7B. <!-- licensing end --> <!-- README_GPTQ.md-provided-files start -->

Provided files and GPTQ parameters

Multiple quantisation parameters are provided, to allow you to choose the best one for your hardware and requirements.

Each separate quant is in a different branch. See below for instructions on fetching from different branches.

All recent GPTQ files are made with AutoGPTQ, and all files in non-main branches are made with AutoGPTQ. Files in the main branch which were uploaded before August 2023 were made with GPTQ-for-LLaMa.

<details> <summary>Explanation of GPTQ parameters</summary>

</details>

Branch Bits GS Act Order Damp % GPTQ Dataset Seq Len Size ExLlama Desc
main 4 128 No 0.1 wikitext 4096 3.90 GB Yes 4-bit, without Act Order and group size 128g.
gptq-4bit-32g-actorder_True 4 32 Yes 0.1 wikitext 4096 4.28 GB Yes 4-bit, with Act Order and group size 32g. Gives highest possible inference quality, with maximum VRAM usage.
gptq-4bit-64g-actorder_True 4 64 Yes 0.1 wikitext 4096 4.02 GB Yes 4-bit, with Act Order and group size 64g. Uses less VRAM than 32g, but with slightly lower accuracy.
gptq-4bit-128g-actorder_True 4 128 Yes 0.1 wikitext 4096 3.90 GB Yes 4-bit, with Act Order and group size 128g. Uses even less VRAM than 64g, but with slightly lower accuracy.
gptq-8bit--1g-actorder_True 8 None Yes 0.1 wikitext 4096 7.01 GB No 8-bit, with Act Order. No group size, to lower VRAM requirements.
gptq-8bit-128g-actorder_False 8 128 No 0.1 wikitext 4096 7.16 GB No 8-bit, with group size 128g for higher inference quality and without Act Order to improve AutoGPTQ speed.
gptq-8bit-128g-actorder_True 8 128 Yes 0.1 wikitext 4096 7.16 GB No 8-bit, with group size 128g for higher inference quality and with Act Order for even higher accuracy.
gptq-8bit-64g-actorder_True 8 64 Yes 0.1 wikitext 4096 7.31 GB No 8-bit, with group size 64g and Act Order for even higher inference quality. Poor AutoGPTQ CUDA speed.

<!-- README_GPTQ.md-provided-files end -->

<!-- README_GPTQ.md-download-from-branches start -->

How to download from branches

git clone --single-branch --branch main https://huggingface.co/TheBloke/orca_mini_v3_7B-GPTQ

How to easily download and use this model in text-generation-webui.

Please make sure you're using the latest version of text-generation-webui.

It is strongly recommended to use the text-generation-webui one-click-installers unless you're sure you know how to make a manual install.

  1. Click the Model tab.
  2. Under Download custom model or LoRA, enter TheBloke/orca_mini_v3_7B-GPTQ.
  1. Click Download.
  2. The model will start downloading. Once it's finished it will say "Done".
  3. In the top left, click the refresh icon next to Model.
  4. In the Model dropdown, choose the model you just downloaded: orca_mini_v3_7B-GPTQ
  5. The model will automatically load, and is now ready for use!
  6. If you want any custom settings, set them and then click Save settings for this model followed by Reload the Model in the top right.
  1. Once you're ready, click the Text Generation tab and enter a prompt to get started! <!-- README_GPTQ.md-text-generation-webui end -->

<!-- README_GPTQ.md-use-from-python start -->

How to use this GPTQ model from Python code

Install the necessary packages

Requires: Transformers 4.32.0 or later, Optimum 1.12.0 or later, and AutoGPTQ 0.4.2 or later.

pip3 install transformers>=4.32.0 optimum>=1.12.0
pip3 install auto-gptq --extra-index-url https://huggingface.github.io/autogptq-index/whl/cu118/  # Use cu117 if on CUDA 11.7

If you have problems installing AutoGPTQ using the pre-built wheels, install it from source instead:

pip3 uninstall -y auto-gptq
git clone https://github.com/PanQiWei/AutoGPTQ
cd AutoGPTQ
pip3 install .

For CodeLlama models only: you must use Transformers 4.33.0 or later.

If 4.33.0 is not yet released when you read this, you will need to install Transformers from source:

pip3 uninstall -y transformers
pip3 install git+https://github.com/huggingface/transformers.git

You can then use the following code

from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline

model_name_or_path = "TheBloke/orca_mini_v3_7B-GPTQ"
# To use a different branch, change revision
# For example: revision="main"
model = AutoModelForCausalLM.from_pretrained(model_name_or_path,
                                             device_map="auto",
                                             trust_remote_code=False,
                                             revision="main")

tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, use_fast=True)

prompt = "Tell me about AI"
prompt_template=f'''### System:
You are an AI assistant that follows instruction extremely well. Help as much as you can.

### User:
{prompt}

### Input:
{input}

### Response:

'''

print("\n\n*** Generate:")

input_ids = tokenizer(prompt_template, return_tensors='pt').input_ids.cuda()
output = model.generate(inputs=input_ids, temperature=0.7, do_sample=True, top_p=0.95, top_k=40, max_new_tokens=512)
print(tokenizer.decode(output[0]))

# Inference can also be done using transformers' pipeline

print("*** Pipeline:")
pipe = pipeline(
    "text-generation",
    model=model,
    tokenizer=tokenizer,
    max_new_tokens=512,
    do_sample=True,
    temperature=0.7,
    top_p=0.95,
    top_k=40,
    repetition_penalty=1.1
)

print(pipe(prompt_template)[0]['generated_text'])

<!-- README_GPTQ.md-use-from-python end -->

<!-- README_GPTQ.md-compatibility start -->

Compatibility

The files provided are tested to work with AutoGPTQ, both via Transformers and using AutoGPTQ directly. They should also work with Occ4m's GPTQ-for-LLaMa fork.

ExLlama is compatible with Llama models in 4-bit. Please see the Provided Files table above for per-file compatibility.

Huggingface Text Generation Inference (TGI) is compatible with all GPTQ models. <!-- README_GPTQ.md-compatibility end -->

<!-- footer start --> <!-- 200823 -->

Discord

For further support, and discussions on these models and AI in general, join us at:

TheBloke AI's Discord server

Thanks, and how to contribute

Thanks to the chirper.ai team!

Thanks to Clay from gpus.llm-utils.org!

I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training.

If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects.

Donaters will get priority support on any and all AI/LLM/model questions and requests, access to a private Discord room, plus other benefits.

Special thanks to: Aemon Algiz.

Patreon special mentions: Alicia Loh, Stephen Murray, K, Ajan Kanaga, RoA, Magnesian, Deo Leter, Olakabola, Eugene Pentland, zynix, Deep Realms, Raymond Fosdick, Elijah Stavena, Iucharbius, Erik Bjäreholt, Luis Javier Navarrete Lozano, Nicholas, theTransient, John Detwiler, alfie_i, knownsqashed, Mano Prime, Willem Michiel, Enrico Ros, LangChain4j, OG, Michael Dempsey, Pierre Kircher, Pedro Madruga, James Bentley, Thomas Belote, Luke @flexchar, Leonard Tan, Johann-Peter Hartmann, Illia Dulskyi, Fen Risland, Chadd, S_X, Jeff Scroggin, Ken Nordquist, Sean Connelly, Artur Olbinski, Swaroop Kallakuri, Jack West, Ai Maven, David Ziegler, Russ Johnson, transmissions 11, John Villwock, Alps Aficionado, Clay Pascal, Viktor Bowallius, Subspace Studios, Rainer Wilmers, Trenton Dambrowitz, vamX, Michael Levine, 준교 김, Brandon Frisco, Kalila, Trailburnt, Randy H, Talal Aujan, Nathan Dryer, Vadim, 阿明, ReadyPlayerEmma, Tiffany J. Kim, George Stoitzev, Spencer Kim, Jerry Meng, Gabriel Tamborski, Cory Kujawski, Jeffrey Morgan, Spiking Neurons AB, Edmond Seymore, Alexandros Triantafyllidis, Lone Striker, Cap'n Zoog, Nikolai Manek, danny, ya boyyy, Derek Yates, usrbinkat, Mandus, TL, Nathan LeClaire, subjectnull, Imad Khwaja, webtim, Raven Klaugh, Asp the Wyvern, Gabriel Puliatti, Caitlyn Gatomon, Joseph William Delisle, Jonathan Leane, Luke Pendergrass, SuperWojo, Sebastain Graf, Will Dee, Fred von Graf, Andrey, Dan Guido, Daniel P. Andersen, Nitin Borwankar, Elle, Vitor Caleffi, biorpg, jjj, NimbleBox.ai, Pieter, Matthew Berman, terasurfer, Michael Davis, Alex, Stanislav Ovsiannikov

Thank you to all my generous patrons and donaters!

And thank you again to a16z for their generous grant.

<!-- footer end -->

Original model card: Pankaj Mathur's Orca Mini v3 7B

orca_mini_v3_7b

A LLama2-7b model trained on Orca Style datasets.

<br>

orca-mini

<br>

🤔 How good is orca-mini-v3-7b? Do the evaluation results from HuggingFace Open LLM leaderboard translate to real-world use cases?

🔍 Now you can figure it out for yourself!

Introducing the orca-mini chatbot powered by the orca-mini-v3-7b model. Dive in and see how the open source 7b model stacks up in the world of massive language models. 🌍

⏰ Hurry up before I run out of GPU credits! 😉

Check it out here 👉

https://huggingface.co/spaces/psmathur/psmathur-orca_mini_v3_7b

<br>

P.S. If you're interested to collaborate, please connect with me at www.linkedin.com/in/pankajam.

<br>

quantized versions

Big thanks to @TheBloke

  1. https://huggingface.co/TheBloke/orca_mini_v3_7B-GGML

  2. https://huggingface.co/TheBloke/orca_mini_v3_7B-GPTQ

<br>

license disclaimer:

This model is bound by the license & usage restrictions of the original Llama-2 model. And comes with no warranty or gurantees of any kind.

<br>

evaluation

We evaluated orca_mini_v3_7b on a wide range of tasks using Language Model Evaluation Harness from EleutherAI.

Here are the results on metrics used by HuggingFaceH4 Open LLM Leaderboard

Task Metric Value Stderr
arc_challenge acc_norm 0.5717 0.0145
hellaswag acc_norm 0.7966 0.0043
mmlu acc_norm 0.5234 0.035
truthfulqa_mc mc2 0.5029 0.0156
Total Average - 0.59865

<br>

example esage

Here is prompt format

### System:
You are an AI assistant that follows instruction extremely well. Help as much as you can.

### User:
Tell me about Orcas.

### Assistant:

Below shows a code example on how to use this model

import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline

tokenizer = AutoTokenizer.from_pretrained("psmathur/orca_mini_v3_7b", use_fast=False)
model = AutoModelForCausalLM.from_pretrained(
  "psmathur/orca_mini_v3_7b",
  torch_dtype=torch.float16,
  load_in_8bit=True,
  low_cpu_mem_usage=True,
  device_map="auto"
)
system_prompt = "### System:\nYou are an AI assistant that follows instruction extremely well. Help as much as you can.\n\n"

#generate text steps
instruction = "Tell me about Orcas."
prompt = f"{system_prompt}### User: {instruction}\n\n### Assistant:\n"
inputs = tokenizer(prompt, return_tensors="pt").to("cuda")
output = model.generate(**inputs, do_sample=True, top_p=0.95, top_k=0, max_new_tokens=4096)

print(tokenizer.decode(output[0], skip_special_tokens=True))

<br>

limitations & biases:

While this model aims for accuracy, it can occasionally produce inaccurate or misleading results.

Despite diligent efforts in refining the pretraining data, there remains a possibility for the generation of inappropriate, biased, or offensive content.

Exercise caution and cross-check information when necessary.

<br>

citiation:

Please kindly cite using the following BibTeX:

@misc{orca_mini_v3_7b,
  author = {Pankaj Mathur},
  title = {orca_mini_v3_7b: An explain tuned Llama2-7b model},
  year = {2023},
  publisher = {GitHub, HuggingFace},
  journal = {GitHub repository, HuggingFace repository},
  howpublished = {\url{https://https://huggingface.co/psmathur/orca_mini_v3_7b},
}
@misc{mukherjee2023orca,
      title={Orca: Progressive Learning from Complex Explanation Traces of GPT-4}, 
      author={Subhabrata Mukherjee and Arindam Mitra and Ganesh Jawahar and Sahaj Agarwal and Hamid Palangi and Ahmed Awadallah},
      year={2023},
      eprint={2306.02707},
      archivePrefix={arXiv},
      primaryClass={cs.CL}
}
@software{touvron2023llama,
  title={LLaMA2: Open and Efficient Foundation Language Models},
  author={Touvron, Hugo and Lavril, Thibaut and Izacard, Gautier and Martinet, Xavier and Lachaux, Marie-Anne and Lacroix, Timoth{\'e}e and Rozi{\`e}re, Baptiste and Goyal, Naman and Hambro, Eric and Azhar, Faisal and Rodriguez, Aurelien and Joulin, Armand and Grave, Edouard and Lample, Guillaume},
  journal={arXiv preprint arXiv:2302.13971},
  year={2023}
}