<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. -->
codet5p-770m-py-sanitized-codebleu-1-True-5e-07-0.1
This model is a fine-tuned version of Salesforce/codet5p-770m-py on the mbpp dataset. It achieves the following results on the evaluation set:
- Loss: 0.7152
- Codebleu: 0.1158
- Ngram Match Score: 0.0289
- Weighted Ngram Match Score: 0.0536
- Syntax Match Score: 0.1362
- Dataflow Match Score: 0.1325
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-07
- train_batch_size: 6
- eval_batch_size: 6
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 100
- num_epochs: 50
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Codebleu | Ngram Match Score | Weighted Ngram Match Score | Syntax Match Score | Dataflow Match Score |
---|---|---|---|---|---|---|---|---|
0.9796 | 1.0 | 20 | 0.9476 | 0.0199 | 0.0000 | 0.0043 | 0.0185 | 0.0301 |
0.9603 | 2.0 | 40 | 0.9196 | 0.0949 | 0.0187 | 0.0469 | 0.1164 | 0.1044 |
0.9247 | 3.0 | 60 | 0.8701 | 0.0977 | 0.0229 | 0.0526 | 0.1190 | 0.1064 |
0.8677 | 4.0 | 80 | 0.8430 | 0.0982 | 0.0231 | 0.0518 | 0.1243 | 0.1024 |
0.8451 | 5.0 | 100 | 0.8179 | 0.1004 | 0.0249 | 0.0558 | 0.1283 | 0.1024 |
0.7991 | 6.0 | 120 | 0.7986 | 0.0997 | 0.0186 | 0.0451 | 0.1270 | 0.1064 |
0.7707 | 7.0 | 140 | 0.7839 | 0.0986 | 0.0179 | 0.0454 | 0.1243 | 0.1064 |
0.7453 | 8.0 | 160 | 0.7721 | 0.0965 | 0.0178 | 0.0459 | 0.1230 | 0.1024 |
0.7144 | 9.0 | 180 | 0.7632 | 0.1139 | 0.0204 | 0.0518 | 0.1402 | 0.1265 |
0.7101 | 10.0 | 200 | 0.7548 | 0.1139 | 0.0204 | 0.0518 | 0.1402 | 0.1265 |
0.6975 | 11.0 | 220 | 0.7479 | 0.1169 | 0.0204 | 0.0522 | 0.1455 | 0.1285 |
0.6707 | 12.0 | 240 | 0.7420 | 0.1205 | 0.0217 | 0.0524 | 0.1481 | 0.1345 |
0.6742 | 13.0 | 260 | 0.7381 | 0.1190 | 0.0221 | 0.0528 | 0.1481 | 0.1305 |
0.6384 | 14.0 | 280 | 0.7346 | 0.1191 | 0.0233 | 0.0529 | 0.1481 | 0.1305 |
0.6241 | 15.0 | 300 | 0.7307 | 0.1210 | 0.0237 | 0.0529 | 0.1508 | 0.1325 |
0.6351 | 16.0 | 320 | 0.7276 | 0.1173 | 0.0240 | 0.0529 | 0.1495 | 0.1245 |
0.6075 | 17.0 | 340 | 0.7242 | 0.1194 | 0.0253 | 0.0540 | 0.1521 | 0.1265 |
0.5998 | 18.0 | 360 | 0.7223 | 0.1194 | 0.0253 | 0.0540 | 0.1521 | 0.1265 |
0.6072 | 19.0 | 380 | 0.7206 | 0.1220 | 0.0293 | 0.0608 | 0.1561 | 0.1265 |
0.6113 | 20.0 | 400 | 0.7187 | 0.1192 | 0.0251 | 0.0521 | 0.1521 | 0.1265 |
0.5841 | 21.0 | 420 | 0.7168 | 0.1193 | 0.0246 | 0.0510 | 0.1468 | 0.1325 |
0.5645 | 22.0 | 440 | 0.7154 | 0.1198 | 0.0247 | 0.0507 | 0.1481 | 0.1325 |
0.5669 | 23.0 | 460 | 0.7140 | 0.1153 | 0.0245 | 0.0510 | 0.1389 | 0.1305 |
0.5484 | 24.0 | 480 | 0.7133 | 0.1143 | 0.0244 | 0.0512 | 0.1362 | 0.1305 |
0.5494 | 25.0 | 500 | 0.7129 | 0.1153 | 0.0245 | 0.0510 | 0.1389 | 0.1305 |
0.5417 | 26.0 | 520 | 0.7126 | 0.1151 | 0.0247 | 0.0510 | 0.1362 | 0.1325 |
0.5329 | 27.0 | 540 | 0.7127 | 0.1161 | 0.0249 | 0.0509 | 0.1389 | 0.1325 |
0.5262 | 28.0 | 560 | 0.7131 | 0.1146 | 0.0257 | 0.0509 | 0.1389 | 0.1285 |
0.521 | 29.0 | 580 | 0.7127 | 0.1100 | 0.0238 | 0.0491 | 0.1362 | 0.1205 |
0.514 | 30.0 | 600 | 0.7131 | 0.1136 | 0.0270 | 0.0551 | 0.1389 | 0.1245 |
0.5087 | 31.0 | 620 | 0.7132 | 0.1145 | 0.0280 | 0.0551 | 0.1389 | 0.1265 |
0.507 | 32.0 | 640 | 0.7134 | 0.1144 | 0.0249 | 0.0494 | 0.1389 | 0.1285 |
0.5034 | 33.0 | 660 | 0.7136 | 0.1074 | 0.0267 | 0.0550 | 0.1336 | 0.1145 |
0.4992 | 34.0 | 680 | 0.7138 | 0.1121 | 0.0282 | 0.0555 | 0.1389 | 0.1205 |
0.5023 | 35.0 | 700 | 0.7138 | 0.1121 | 0.0282 | 0.0555 | 0.1389 | 0.1205 |
0.4883 | 36.0 | 720 | 0.7138 | 0.1121 | 0.0282 | 0.0555 | 0.1389 | 0.1205 |
0.4953 | 37.0 | 740 | 0.7141 | 0.1072 | 0.0269 | 0.0530 | 0.1336 | 0.1145 |
0.486 | 38.0 | 760 | 0.7144 | 0.1072 | 0.0269 | 0.0530 | 0.1336 | 0.1145 |
0.4766 | 39.0 | 780 | 0.7146 | 0.1071 | 0.0239 | 0.0473 | 0.1336 | 0.1165 |
0.4778 | 40.0 | 800 | 0.7146 | 0.1077 | 0.0242 | 0.0472 | 0.1310 | 0.1205 |
0.48 | 41.0 | 820 | 0.7142 | 0.1077 | 0.0242 | 0.0472 | 0.1310 | 0.1205 |
0.4675 | 42.0 | 840 | 0.7143 | 0.1077 | 0.0242 | 0.0472 | 0.1310 | 0.1205 |
0.4805 | 43.0 | 860 | 0.7148 | 0.1131 | 0.0240 | 0.0473 | 0.1323 | 0.1325 |
0.4743 | 44.0 | 880 | 0.7149 | 0.1151 | 0.0276 | 0.0534 | 0.1349 | 0.1325 |
0.4806 | 45.0 | 900 | 0.7152 | 0.1157 | 0.0285 | 0.0534 | 0.1362 | 0.1325 |
0.469 | 46.0 | 920 | 0.7153 | 0.1157 | 0.0285 | 0.0534 | 0.1362 | 0.1325 |
0.4714 | 47.0 | 940 | 0.7152 | 0.1158 | 0.0288 | 0.0536 | 0.1362 | 0.1325 |
0.4797 | 48.0 | 960 | 0.7152 | 0.1158 | 0.0288 | 0.0536 | 0.1362 | 0.1325 |
0.4639 | 49.0 | 980 | 0.7153 | 0.1158 | 0.0289 | 0.0536 | 0.1362 | 0.1325 |
0.4777 | 50.0 | 1000 | 0.7152 | 0.1158 | 0.0289 | 0.0536 | 0.1362 | 0.1325 |
Framework versions
- Transformers 4.30.0.dev0
- Pytorch 2.0.1
- Datasets 2.13.1
- Tokenizers 0.13.3