<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. -->
EElayoutlmv3_jordyvl_rvl_cdip_100_examples_per_class_2023-08-12_vision_only
This model is a fine-tuned version of microsoft/layoutlmv3-base on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 1.2733
- Accuracy: 0.7825
- Exit 0 Accuracy: 0.0775
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 2
- eval_batch_size: 1
- seed: 42
- gradient_accumulation_steps: 24
- total_train_batch_size: 48
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 60
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | Exit 0 Accuracy |
---|---|---|---|---|---|
No log | 0.96 | 16 | 2.6800 | 0.13 | 0.0675 |
No log | 1.98 | 33 | 2.4446 | 0.28 | 0.0725 |
No log | 3.0 | 50 | 2.1924 | 0.37 | 0.0675 |
No log | 3.96 | 66 | 1.8733 | 0.5175 | 0.07 |
No log | 4.98 | 83 | 1.6056 | 0.6075 | 0.0775 |
No log | 6.0 | 100 | 1.3480 | 0.6725 | 0.08 |
No log | 6.96 | 116 | 1.1393 | 0.735 | 0.07 |
No log | 7.98 | 133 | 1.0738 | 0.7375 | 0.07 |
No log | 9.0 | 150 | 0.9271 | 0.7725 | 0.075 |
No log | 9.96 | 166 | 0.8885 | 0.7675 | 0.085 |
No log | 10.98 | 183 | 0.8669 | 0.76 | 0.075 |
No log | 12.0 | 200 | 0.8547 | 0.7775 | 0.0725 |
No log | 12.96 | 216 | 0.8633 | 0.76 | 0.07 |
No log | 13.98 | 233 | 0.8498 | 0.7675 | 0.075 |
No log | 15.0 | 250 | 0.9608 | 0.7675 | 0.0675 |
No log | 15.96 | 266 | 0.8952 | 0.7875 | 0.08 |
No log | 16.98 | 283 | 0.9486 | 0.7575 | 0.0725 |
No log | 18.0 | 300 | 0.9826 | 0.765 | 0.0825 |
No log | 18.96 | 316 | 1.0230 | 0.7625 | 0.09 |
No log | 19.98 | 333 | 1.0961 | 0.76 | 0.0875 |
No log | 21.0 | 350 | 1.0083 | 0.785 | 0.07 |
No log | 21.96 | 366 | 1.0394 | 0.7725 | 0.0725 |
No log | 22.98 | 383 | 1.0825 | 0.78 | 0.085 |
No log | 24.0 | 400 | 1.0789 | 0.77 | 0.075 |
No log | 24.96 | 416 | 1.1030 | 0.7725 | 0.0925 |
No log | 25.98 | 433 | 1.1252 | 0.775 | 0.075 |
No log | 27.0 | 450 | 1.1333 | 0.7725 | 0.0725 |
No log | 27.96 | 466 | 1.1416 | 0.765 | 0.0775 |
No log | 28.98 | 483 | 1.1442 | 0.7775 | 0.0775 |
1.6768 | 30.0 | 500 | 1.1620 | 0.7825 | 0.1025 |
1.6768 | 30.96 | 516 | 1.1617 | 0.7825 | 0.0775 |
1.6768 | 31.98 | 533 | 1.1788 | 0.775 | 0.0875 |
1.6768 | 33.0 | 550 | 1.1858 | 0.7725 | 0.0825 |
1.6768 | 33.96 | 566 | 1.1842 | 0.7825 | 0.0725 |
1.6768 | 34.98 | 583 | 1.1964 | 0.785 | 0.085 |
1.6768 | 36.0 | 600 | 1.2034 | 0.78 | 0.075 |
1.6768 | 36.96 | 616 | 1.2050 | 0.7825 | 0.07 |
1.6768 | 37.98 | 633 | 1.2111 | 0.7825 | 0.075 |
1.6768 | 39.0 | 650 | 1.2217 | 0.785 | 0.0925 |
1.6768 | 39.96 | 666 | 1.2510 | 0.7775 | 0.105 |
1.6768 | 40.98 | 683 | 1.2512 | 0.7825 | 0.0825 |
1.6768 | 42.0 | 700 | 1.2529 | 0.7775 | 0.0775 |
1.6768 | 42.96 | 716 | 1.2557 | 0.78 | 0.0725 |
1.6768 | 43.98 | 733 | 1.2615 | 0.7775 | 0.0775 |
1.6768 | 45.0 | 750 | 1.2621 | 0.78 | 0.0825 |
1.6768 | 45.96 | 766 | 1.2613 | 0.785 | 0.075 |
1.6768 | 46.98 | 783 | 1.2614 | 0.78 | 0.075 |
1.6768 | 48.0 | 800 | 1.2598 | 0.7825 | 0.075 |
1.6768 | 48.96 | 816 | 1.2650 | 0.7825 | 0.085 |
1.6768 | 49.98 | 833 | 1.2665 | 0.7825 | 0.08 |
1.6768 | 51.0 | 850 | 1.2673 | 0.785 | 0.0775 |
1.6768 | 51.96 | 866 | 1.2626 | 0.7775 | 0.075 |
1.6768 | 52.98 | 883 | 1.2643 | 0.7825 | 0.075 |
1.6768 | 54.0 | 900 | 1.2702 | 0.78 | 0.0775 |
1.6768 | 54.96 | 916 | 1.2723 | 0.78 | 0.0775 |
1.6768 | 55.98 | 933 | 1.2730 | 0.7825 | 0.0775 |
1.6768 | 57.0 | 950 | 1.2732 | 0.7825 | 0.0775 |
1.6768 | 57.6 | 960 | 1.2733 | 0.7825 | 0.0775 |
Framework versions
- Transformers 4.31.0
- Pytorch 2.0.1+cu117
- Datasets 2.13.1
- Tokenizers 0.13.3