<!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. -->
RafaelMayer/copec-whatsapp-13-roberta
This model is a fine-tuned version of PlanTL-GOB-ES/roberta-base-bne on an unknown dataset. It achieves the following results on the evaluation set:
- Train Loss: 0.6498
 - Validation Loss: 0.6487
 - Train Accuracy: 0.7647
 - Train Precision: [0. 0.76470588]
 - Train Precision W: 0.5848
 - Train Recall: [0. 1.]
 - Train Recall W: 0.7647
 - Train F1: [0. 0.86666667]
 - Train F1 W: 0.6627
 - Epoch: 9
 
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': True, 'is_legacy_optimizer': False, 'learning_rate': {'class_name': 'WarmUp', 'config': {'initial_learning_rate': 2e-05, 'decay_schedule_fn': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': -460, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'passive_serialization': True}, 'warmup_steps': 500, 'power': 1.0, 'name': None}}, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False}
 - training_precision: float32
 
Training results
| Train Loss | Validation Loss | Train Accuracy | Train Precision | Train Precision W | Train Recall | Train Recall W | Train F1 | Train F1 W | Epoch | 
|---|---|---|---|---|---|---|---|---|---|
| 0.6829 | 0.6850 | 0.7647 | [0. 0.76470588] | 0.5848 | [0. 1.] | 0.7647 | [0. 0.86666667] | 0.6627 | 1 | 
| 0.6834 | 0.6838 | 0.7647 | [0. 0.76470588] | 0.5848 | [0. 1.] | 0.7647 | [0. 0.86666667] | 0.6627 | 2 | 
| 0.6808 | 0.6818 | 0.7647 | [0. 0.76470588] | 0.5848 | [0. 1.] | 0.7647 | [0. 0.86666667] | 0.6627 | 3 | 
| 0.6787 | 0.6790 | 0.7647 | [0. 0.76470588] | 0.5848 | [0. 1.] | 0.7647 | [0. 0.86666667] | 0.6627 | 4 | 
| 0.6743 | 0.6753 | 0.7647 | [0. 0.76470588] | 0.5848 | [0. 1.] | 0.7647 | [0. 0.86666667] | 0.6627 | 5 | 
| 0.6684 | 0.6706 | 0.7647 | [0. 0.76470588] | 0.5848 | [0. 1.] | 0.7647 | [0. 0.86666667] | 0.6627 | 6 | 
| 0.6643 | 0.6647 | 0.7647 | [0. 0.76470588] | 0.5848 | [0. 1.] | 0.7647 | [0. 0.86666667] | 0.6627 | 7 | 
| 0.6522 | 0.6576 | 0.7647 | [0. 0.76470588] | 0.5848 | [0. 1.] | 0.7647 | [0. 0.86666667] | 0.6627 | 8 | 
| 0.6498 | 0.6487 | 0.7647 | [0. 0.76470588] | 0.5848 | [0. 1.] | 0.7647 | [0. 0.86666667] | 0.6627 | 9 | 
Framework versions
- Transformers 4.31.0
 - TensorFlow 2.12.0
 - Datasets 2.14.4
 - Tokenizers 0.13.3