TODO: [To be filled]
Evaluation on LibriSpeech Test
The following script shows how to evaluate this model on the LibriSpeech "clean" and "other" test dataset.
from datasets import load_dataset
from transformers import Speech2TextTransformerForConditionalGeneration, Speech2TextTransformerTokenizer
import soundfile as sf
from jiwer import wer
librispeech_eval = load_dataset("librispeech_asr", "clean", split="test") # change to "other" for other test dataset
model = Speech2TextTransformerForConditionalGeneration.from_pretrained("valhalla/s2t_librispeech_large").to("cuda")
tokenizer = Speech2TextTransformerTokenizer.from_pretrained("valhalla/s2t_librispeech_large", do_upper_case=True)
def map_to_array(batch):
speech, _ = sf.read(batch["file"])
batch["speech"] = speech
return batch
librispeech_eval = librispeech_eval.map(map_to_array)
def map_to_pred(batch):
features = tokenizer(batch["speech"], sample_rate=16000, padding=True, return_tensors="pt")
input_features = features.input_features.to("cuda")
attention_mask = features.attention_mask.to("cuda")
gen_tokens = model.generate(input_ids=input_features, attention_mask=attention_mask)
batch["transcription"] = tokenizer.batch_decode(gen_tokens, skip_special_tokens=True)
return batch
result = librispeech_eval.map(map_to_pred, batched=True, batch_size=8, remove_columns=["speech"])
print("WER:", wer(result["text"], result["transcription"]))
Result (WER):
"clean" | "other" |
---|---|
3.3 | 7.5 |