This model is developed with transformers v4.13 with minor patch in this fork.
Setup
git clone https://github.com/vuiseng9/transformers
cd transformers
git checkout pegasus-v4p13 && git reset --hard 41eeb07
# installation, set summarization dependency
# . . .
Train
#!/usr/bin/env bash
export CUDA_VISIBLE_DEVICES=0,1,2,3
NEPOCH=10
RUNID=pegasus-arxiv-${NEPOCH}eph-run1
OUTDIR=/data1/vchua/pegasus-hf4p13/pegasus-ft/${RUNID}
mkdir -p $OUTDIR
python run_summarization.py \
--model_name_or_path google/pegasus-large \
--dataset_name ccdv/arxiv-summarization \
--do_train \
--adafactor \
--learning_rate 8e-4 \
--label_smoothing_factor 0.1 \
--num_train_epochs $NEPOCH \
--per_device_train_batch_size 2 \
--do_eval \
--per_device_eval_batch_size 2 \
--num_beams 8 \
--max_source_length 1024 \
--max_target_length 256 \
--evaluation_strategy steps \
--eval_steps 10000 \
--save_strategy steps \
--save_steps 5000 \
--logging_steps 1 \
--overwrite_output_dir \
--run_name $RUNID \
--output_dir $OUTDIR > $OUTDIR/run.log 2>&1 &
Eval
#!/usr/bin/env bash
export CUDA_VISIBLE_DEVICES=3
DT=$(date +%F_%H-%M)
RUNID=pegasus-arxiv-${DT}
OUTDIR=/data1/vchua/pegasus-hf4p13/pegasus-eval/${RUNID}
mkdir -p $OUTDIR
python run_summarization.py \
--model_name_or_path vuiseng9/pegasus-arxiv \
--dataset_name ccdv/arxiv-summarization \
--max_source_length 1024 \
--max_target_length 256 \
--do_predict \
--per_device_eval_batch_size 8 \
--predict_with_generate \
--num_beams 8 \
--overwrite_output_dir \
--run_name $RUNID \
--output_dir $OUTDIR > $OUTDIR/run.log 2>&1 &
Although fine-tuning is carried out for 5 epochs, this model is the checkpoint @150000 steps, 5.91 epoch, 34hrs) with lowest eval loss during training. Test/predict with this checkpoint should give results below. Note that we observe model at 80000 steps is closed to published result from HF.
***** predict metrics *****
predict_gen_len = 210.0925
predict_loss = 1.7192
predict_rouge1 = 46.1383
predict_rouge2 = 19.1393
predict_rougeL = 27.7573
predict_rougeLsum = 41.583
predict_runtime = 2:40:25.86
predict_samples = 6440
predict_samples_per_second = 0.669
predict_steps_per_second = 0.084