This model is developed with transformers v4.13 with minor patch in this fork.
Setup
git clone https://github.com/vuiseng9/transformers
cd transformers
git checkout pegasus-v4p13 && git reset --hard 41eeb07
# installation, set summarization dependency
# . . .
Train
#!/usr/bin/env bash
export CUDA_VISIBLE_DEVICES=0,1,2,3
NEPOCH=10
RUNID=pegasus-billsum-${NEPOCH}eph-run1
OUTDIR=/data1/vchua/pegasus-hf4p13/pegasus/${RUNID}
mkdir -p $OUTDIR
nohup python run_summarization.py \
--model_name_or_path google/pegasus-large \
--dataset_name billsum \
--do_train \
--adafactor \
--learning_rate 2e-4 \
--label_smoothing_factor 0.1 \
--num_train_epochs $NEPOCH \
--per_device_train_batch_size 2 \
--do_eval \
--per_device_eval_batch_size 2 \
--num_beams 8 \
--max_source_length 1024 \
--max_target_length 256 \
--evaluation_strategy steps \
--eval_steps 1000 \
--save_strategy steps \
--save_steps 2000 \
--logging_steps 1 \
--overwrite_output_dir \
--run_name $RUNID \
--output_dir $OUTDIR > $OUTDIR/run.log 2>&1 &
Eval
#!/usr/bin/env bash
export CUDA_VISIBLE_DEVICES=3
DT=$(date +%F_%H-%M)
RUNID=pegasus-billsum-${DT}
OUTDIR=/data1/vchua/pegasus-hf4p13/pegasus-test/${RUNID}
mkdir -p $OUTDIR
nohup python run_summarization.py \
--model_name_or_path vuiseng9/pegasus-billsum \
--dataset_name billsum \
--max_source_length 1024 \
--max_target_length 256 \
--do_predict \
--per_device_eval_batch_size 8 \
--predict_with_generate \
--num_beams 8 \
--overwrite_output_dir \
--run_name $RUNID \
--output_dir $OUTDIR > $OUTDIR/run.log 2>&1 &
Although fine-tuning is carried out for 10 epochs, this model is the checkpoint (@12000 steps, 6.6epoch, 210mins) with lowest eval loss during training. Test/predict with this checkpoint should give results below.
***** predict metrics *****
predict_gen_len = 179.7363
predict_loss = 1.2452
predict_rouge1 = 56.8657
predict_rouge2 = 38.6531
predict_rougeL = 44.8399
predict_rougeLsum = 51.6266
predict_runtime = 1:19:28.20
predict_samples = 3269
predict_samples_per_second = 0.686
predict_steps_per_second = 0.086