Model card for repghostnet_130.in1k
A RepGhostNet image classification model. Trained on ImageNet-1k by paper authors.
Model Details
- Model Type: Image classification / feature backbone
- Model Stats:
- Params (M): 5.5
- GMACs: 0.2
- Activations (M): 5.2
- Image size: 224 x 224
- Papers:
- RepGhost: A Hardware-Efficient Ghost Module via Re-parameterization: https://arxiv.org/abs/2211.06088
- Original: https://github.com/ChengpengChen/RepGhost
- Dataset: ImageNet-1k
Model Usage
Image Classification
from urllib.request import urlopen
from PIL import Image
import timm
img = Image.open(urlopen(
'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
))
model = timm.create_model('repghostnet_130.in1k', pretrained=True)
model = model.eval()
# get model specific transforms (normalization, resize)
data_config = timm.data.resolve_model_data_config(model)
transforms = timm.data.create_transform(**data_config, is_training=False)
output = model(transforms(img).unsqueeze(0)) # unsqueeze single image into batch of 1
top5_probabilities, top5_class_indices = torch.topk(output.softmax(dim=1) * 100, k=5)
Feature Map Extraction
from urllib.request import urlopen
from PIL import Image
import timm
img = Image.open(urlopen(
'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
))
model = timm.create_model(
'repghostnet_130.in1k',
pretrained=True,
features_only=True,
)
model = model.eval()
# get model specific transforms (normalization, resize)
data_config = timm.data.resolve_model_data_config(model)
transforms = timm.data.create_transform(**data_config, is_training=False)
output = model(transforms(img).unsqueeze(0)) # unsqueeze single image into batch of 1
for o in output:
# print shape of each feature map in output
# e.g.:
# torch.Size([1, 20, 112, 112])
# torch.Size([1, 32, 56, 56])
# torch.Size([1, 52, 28, 28])
# torch.Size([1, 104, 14, 14])
# torch.Size([1, 208, 7, 7])
print(o.shape)
Image Embeddings
from urllib.request import urlopen
from PIL import Image
import timm
img = Image.open(urlopen(
'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
))
model = timm.create_model(
'repghostnet_130.in1k',
pretrained=True,
num_classes=0, # remove classifier nn.Linear
)
model = model.eval()
# get model specific transforms (normalization, resize)
data_config = timm.data.resolve_model_data_config(model)
transforms = timm.data.create_transform(**data_config, is_training=False)
output = model(transforms(img).unsqueeze(0)) # output is (batch_size, num_features) shaped tensor
# or equivalently (without needing to set num_classes=0)
output = model.forward_features(transforms(img).unsqueeze(0))
# output is unpooled, a (1, 1248, 7, 7) shaped tensor
output = model.forward_head(output, pre_logits=True)
# output is a (1, num_features) shaped tensor
Citation
@article{chen2022repghost,
title={RepGhost: A Hardware-Efficient Ghost Module via Re-parameterization},
author={Chen, Chengpeng, and Guo, Zichao, and Zeng, Haien, and Xiong, Pengfei and Dong, Jian},
journal={arXiv preprint arXiv:2211.06088},
year={2022}
}