<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. -->
EElayoutlmv3_jordyvl_rvl_cdip_100_examples_per_class_2023-08-21_text_vision_enc_1_2_3_4_ramp
This model is a fine-tuned version of microsoft/layoutlmv3-base on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 1.5044
- Accuracy: 0.74
- Exit 0 Accuracy: 0.075
- Exit 1 Accuracy: 0.0925
- Exit 2 Accuracy: 0.44
- Exit 3 Accuracy: 0.525
- Exit 4 Accuracy: 0.5675
- Exit 5 Accuracy: 0.635
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 2
- eval_batch_size: 1
- seed: 42
- gradient_accumulation_steps: 24
- total_train_batch_size: 48
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 60
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | Exit 0 Accuracy | Exit 1 Accuracy | Exit 2 Accuracy | Exit 3 Accuracy | Exit 4 Accuracy | Exit 5 Accuracy |
---|---|---|---|---|---|---|---|---|---|---|
No log | 0.96 | 16 | 2.6509 | 0.18 | 0.075 | 0.0925 | 0.0625 | 0.0625 | 0.0625 | 0.0625 |
No log | 1.98 | 33 | 2.4283 | 0.2925 | 0.0775 | 0.0925 | 0.0625 | 0.0625 | 0.0625 | 0.0625 |
No log | 3.0 | 50 | 2.2343 | 0.3325 | 0.0875 | 0.0925 | 0.0625 | 0.0625 | 0.0625 | 0.0625 |
No log | 3.96 | 66 | 1.9465 | 0.4425 | 0.08 | 0.0925 | 0.0625 | 0.0625 | 0.0625 | 0.0625 |
No log | 4.98 | 83 | 1.6496 | 0.6025 | 0.075 | 0.0925 | 0.0625 | 0.0625 | 0.0625 | 0.0625 |
No log | 6.0 | 100 | 1.4404 | 0.635 | 0.075 | 0.0925 | 0.0625 | 0.0625 | 0.0625 | 0.0625 |
No log | 6.96 | 116 | 1.2292 | 0.715 | 0.08 | 0.0925 | 0.065 | 0.0625 | 0.0625 | 0.0625 |
No log | 7.98 | 133 | 1.0856 | 0.715 | 0.075 | 0.0925 | 0.065 | 0.0625 | 0.0625 | 0.0625 |
No log | 9.0 | 150 | 0.9673 | 0.7475 | 0.0775 | 0.0925 | 0.065 | 0.0625 | 0.0625 | 0.0625 |
No log | 9.96 | 166 | 0.9172 | 0.7475 | 0.075 | 0.0925 | 0.065 | 0.0625 | 0.0625 | 0.0625 |
No log | 10.98 | 183 | 0.9036 | 0.7525 | 0.0775 | 0.0925 | 0.065 | 0.0625 | 0.0625 | 0.0625 |
No log | 12.0 | 200 | 0.8164 | 0.7775 | 0.075 | 0.0925 | 0.065 | 0.0625 | 0.0625 | 0.0625 |
No log | 12.96 | 216 | 0.8499 | 0.765 | 0.0775 | 0.0925 | 0.07 | 0.0625 | 0.0625 | 0.0625 |
No log | 13.98 | 233 | 0.9053 | 0.775 | 0.0775 | 0.0925 | 0.07 | 0.0625 | 0.0625 | 0.0625 |
No log | 15.0 | 250 | 0.9470 | 0.775 | 0.08 | 0.0925 | 0.0675 | 0.0625 | 0.0625 | 0.0625 |
No log | 15.96 | 266 | 0.9509 | 0.7575 | 0.075 | 0.0925 | 0.0675 | 0.0625 | 0.0625 | 0.0625 |
No log | 16.98 | 283 | 0.9221 | 0.78 | 0.075 | 0.0925 | 0.0725 | 0.0625 | 0.0625 | 0.07 |
No log | 18.0 | 300 | 0.9725 | 0.775 | 0.0775 | 0.0925 | 0.0925 | 0.0625 | 0.0625 | 0.1025 |
No log | 18.96 | 316 | 1.1409 | 0.7625 | 0.0825 | 0.0925 | 0.125 | 0.0625 | 0.0625 | 0.11 |
No log | 19.98 | 333 | 1.0653 | 0.7825 | 0.0925 | 0.0925 | 0.1475 | 0.0625 | 0.0625 | 0.1425 |
No log | 21.0 | 350 | 1.0736 | 0.78 | 0.0775 | 0.0925 | 0.1875 | 0.0625 | 0.0625 | 0.15 |
No log | 21.96 | 366 | 1.1706 | 0.7725 | 0.075 | 0.0925 | 0.2275 | 0.065 | 0.0575 | 0.1975 |
No log | 22.98 | 383 | 1.1940 | 0.76 | 0.0775 | 0.0925 | 0.215 | 0.1325 | 0.145 | 0.2 |
No log | 24.0 | 400 | 1.0195 | 0.7875 | 0.0775 | 0.0925 | 0.2225 | 0.19 | 0.17 | 0.2575 |
No log | 24.96 | 416 | 1.1589 | 0.7625 | 0.075 | 0.0925 | 0.2725 | 0.26 | 0.2425 | 0.29 |
No log | 25.98 | 433 | 1.2225 | 0.75 | 0.075 | 0.0925 | 0.255 | 0.2825 | 0.2875 | 0.3375 |
No log | 27.0 | 450 | 1.1789 | 0.7575 | 0.0775 | 0.0925 | 0.2775 | 0.32 | 0.3775 | 0.3775 |
No log | 27.96 | 466 | 1.1574 | 0.7725 | 0.075 | 0.09 | 0.29 | 0.3375 | 0.3775 | 0.4225 |
No log | 28.98 | 483 | 1.2567 | 0.7525 | 0.09 | 0.0925 | 0.3375 | 0.3575 | 0.43 | 0.42 |
1.6703 | 30.0 | 500 | 1.1840 | 0.7775 | 0.09 | 0.0925 | 0.35 | 0.375 | 0.44 | 0.45 |
1.6703 | 30.96 | 516 | 1.2607 | 0.7575 | 0.08 | 0.0925 | 0.3375 | 0.375 | 0.4475 | 0.4675 |
1.6703 | 31.98 | 533 | 1.2006 | 0.775 | 0.0775 | 0.0925 | 0.345 | 0.395 | 0.4525 | 0.47 |
1.6703 | 33.0 | 550 | 1.3099 | 0.745 | 0.0775 | 0.0925 | 0.32 | 0.38 | 0.4575 | 0.4725 |
1.6703 | 33.96 | 566 | 1.2074 | 0.77 | 0.075 | 0.0925 | 0.37 | 0.4275 | 0.4825 | 0.5175 |
1.6703 | 34.98 | 583 | 1.2929 | 0.76 | 0.075 | 0.0925 | 0.375 | 0.4375 | 0.48 | 0.5125 |
1.6703 | 36.0 | 600 | 1.2752 | 0.7625 | 0.0775 | 0.0925 | 0.395 | 0.4575 | 0.52 | 0.5125 |
1.6703 | 36.96 | 616 | 1.3596 | 0.7475 | 0.0825 | 0.0925 | 0.4 | 0.47 | 0.5075 | 0.52 |
1.6703 | 37.98 | 633 | 1.3920 | 0.735 | 0.0775 | 0.0925 | 0.3925 | 0.4725 | 0.52 | 0.5275 |
1.6703 | 39.0 | 650 | 1.4005 | 0.7475 | 0.075 | 0.0925 | 0.3875 | 0.455 | 0.5125 | 0.5225 |
1.6703 | 39.96 | 666 | 1.3938 | 0.75 | 0.0775 | 0.0925 | 0.415 | 0.4925 | 0.555 | 0.54 |
1.6703 | 40.98 | 683 | 1.3711 | 0.755 | 0.0775 | 0.0925 | 0.4075 | 0.4775 | 0.5375 | 0.57 |
1.6703 | 42.0 | 700 | 1.3591 | 0.7475 | 0.075 | 0.0925 | 0.415 | 0.51 | 0.5525 | 0.575 |
1.6703 | 42.96 | 716 | 1.4183 | 0.7475 | 0.0775 | 0.0925 | 0.4275 | 0.5 | 0.555 | 0.5875 |
1.6703 | 43.98 | 733 | 1.3572 | 0.7475 | 0.075 | 0.0925 | 0.4275 | 0.505 | 0.55 | 0.595 |
1.6703 | 45.0 | 750 | 1.4095 | 0.755 | 0.0775 | 0.0925 | 0.4225 | 0.5075 | 0.56 | 0.6025 |
1.6703 | 45.96 | 766 | 1.4217 | 0.7425 | 0.0775 | 0.0925 | 0.435 | 0.5 | 0.56 | 0.5975 |
1.6703 | 46.98 | 783 | 1.3684 | 0.76 | 0.075 | 0.0925 | 0.44 | 0.5075 | 0.56 | 0.6075 |
1.6703 | 48.0 | 800 | 1.4222 | 0.7625 | 0.075 | 0.0925 | 0.4425 | 0.5125 | 0.57 | 0.62 |
1.6703 | 48.96 | 816 | 1.4734 | 0.75 | 0.075 | 0.0925 | 0.435 | 0.5175 | 0.57 | 0.615 |
1.6703 | 49.98 | 833 | 1.4910 | 0.7425 | 0.075 | 0.0925 | 0.44 | 0.515 | 0.5625 | 0.62 |
1.6703 | 51.0 | 850 | 1.4879 | 0.7525 | 0.075 | 0.0925 | 0.445 | 0.52 | 0.57 | 0.6125 |
1.6703 | 51.96 | 866 | 1.4889 | 0.7525 | 0.075 | 0.0925 | 0.445 | 0.5275 | 0.5775 | 0.615 |
1.6703 | 52.98 | 883 | 1.4836 | 0.75 | 0.075 | 0.0925 | 0.4425 | 0.5175 | 0.57 | 0.6275 |
1.6703 | 54.0 | 900 | 1.4904 | 0.7475 | 0.075 | 0.0925 | 0.44 | 0.52 | 0.5725 | 0.6275 |
1.6703 | 54.96 | 916 | 1.4920 | 0.745 | 0.075 | 0.0925 | 0.4425 | 0.5225 | 0.5725 | 0.63 |
1.6703 | 55.98 | 933 | 1.5048 | 0.7425 | 0.075 | 0.0925 | 0.44 | 0.5225 | 0.5675 | 0.6325 |
1.6703 | 57.0 | 950 | 1.5058 | 0.74 | 0.075 | 0.0925 | 0.44 | 0.525 | 0.5675 | 0.635 |
1.6703 | 57.6 | 960 | 1.5044 | 0.74 | 0.075 | 0.0925 | 0.44 | 0.525 | 0.5675 | 0.635 |
Framework versions
- Transformers 4.31.0
- Pytorch 2.0.1+cu117
- Datasets 2.13.1
- Tokenizers 0.13.3