generated_from_trainer

<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. -->

mydataset-repo

This model is a fine-tuned version of SCUT-DLVCLab/lilt-roberta-en-base on the mydataset dataset. It achieves the following results on the evaluation set:

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

Training results

Training Loss Epoch Step Validation Loss Total-str Total-val Overall Precision Overall Recall Overall F1 Overall Accuracy
0.0674 28.57 200 0.0000 {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 10} {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 10} 1.0 1.0 1.0 1.0
0.0001 57.14 400 0.0000 {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 10} {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 10} 1.0 1.0 1.0 1.0
0.0 85.71 600 0.0000 {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 10} {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 10} 1.0 1.0 1.0 1.0
0.0 114.29 800 0.0000 {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 10} {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 10} 1.0 1.0 1.0 1.0
0.0 142.86 1000 0.0000 {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 10} {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 10} 1.0 1.0 1.0 1.0
0.0 171.43 1200 0.0000 {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 10} {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 10} 1.0 1.0 1.0 1.0
0.0 200.0 1400 0.0000 {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 10} {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 10} 1.0 1.0 1.0 1.0
0.0 228.57 1600 0.0000 {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 10} {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 10} 1.0 1.0 1.0 1.0
0.0 257.14 1800 0.0000 {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 10} {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 10} 1.0 1.0 1.0 1.0
0.0 285.71 2000 0.0000 {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 10} {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 10} 1.0 1.0 1.0 1.0
0.0 314.29 2200 0.0000 {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 10} {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 10} 1.0 1.0 1.0 1.0
0.0 342.86 2400 0.0000 {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 10} {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 10} 1.0 1.0 1.0 1.0
0.0 371.43 2600 0.0000 {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 10} {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 10} 1.0 1.0 1.0 1.0
0.0 400.0 2800 0.0000 {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 10} {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 10} 1.0 1.0 1.0 1.0
0.0 428.57 3000 0.0000 {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 10} {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 10} 1.0 1.0 1.0 1.0
0.0 457.14 3200 0.0000 {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 10} {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 10} 1.0 1.0 1.0 1.0
0.0 485.71 3400 0.0000 {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 10} {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 10} 1.0 1.0 1.0 1.0
0.0 514.29 3600 0.0000 {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 10} {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 10} 1.0 1.0 1.0 1.0
0.0 542.86 3800 0.0000 {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 10} {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 10} 1.0 1.0 1.0 1.0
0.0 571.43 4000 0.0000 {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 10} {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 10} 1.0 1.0 1.0 1.0
0.0 600.0 4200 0.0000 {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 10} {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 10} 1.0 1.0 1.0 1.0
0.0 628.57 4400 0.0000 {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 10} {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 10} 1.0 1.0 1.0 1.0
0.0 657.14 4600 0.0000 {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 10} {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 10} 1.0 1.0 1.0 1.0
0.0 685.71 4800 0.0000 {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 10} {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 10} 1.0 1.0 1.0 1.0
0.0 714.29 5000 0.0000 {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 10} {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 10} 1.0 1.0 1.0 1.0

Framework versions