<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. -->
EElayoutlmv3_jordyvl_rvl_cdip_100_examples_per_class_2023-08-22_text_vision_enc_5_6_7_8_ramp
This model is a fine-tuned version of microsoft/layoutlmv3-base on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 1.5033
- Accuracy: 0.76
- Exit 0 Accuracy: 0.075
- Exit 1 Accuracy: 0.095
- Exit 2 Accuracy: 0.73
- Exit 3 Accuracy: 0.74
- Exit 4 Accuracy: 0.7425
- Exit 5 Accuracy: 0.7525
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 2
- eval_batch_size: 1
- seed: 42
- gradient_accumulation_steps: 24
- total_train_batch_size: 48
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 60
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | Exit 0 Accuracy | Exit 1 Accuracy | Exit 2 Accuracy | Exit 3 Accuracy | Exit 4 Accuracy | Exit 5 Accuracy |
---|---|---|---|---|---|---|---|---|---|---|
No log | 0.96 | 16 | 2.6757 | 0.19 | 0.0775 | 0.0925 | 0.115 | 0.0675 | 0.0625 | 0.0625 |
No log | 1.98 | 33 | 2.4683 | 0.275 | 0.075 | 0.0925 | 0.1075 | 0.07 | 0.0625 | 0.0625 |
No log | 3.0 | 50 | 2.2534 | 0.3525 | 0.0775 | 0.095 | 0.1175 | 0.0725 | 0.0625 | 0.0625 |
No log | 3.96 | 66 | 1.9728 | 0.4225 | 0.0775 | 0.095 | 0.1375 | 0.1325 | 0.0675 | 0.0625 |
No log | 4.98 | 83 | 1.6809 | 0.565 | 0.08 | 0.095 | 0.1625 | 0.1475 | 0.0775 | 0.0625 |
No log | 6.0 | 100 | 1.5205 | 0.6075 | 0.0775 | 0.095 | 0.1725 | 0.155 | 0.085 | 0.0625 |
No log | 6.96 | 116 | 1.3038 | 0.6825 | 0.0775 | 0.095 | 0.1775 | 0.195 | 0.11 | 0.0625 |
No log | 7.98 | 133 | 1.1279 | 0.7125 | 0.075 | 0.095 | 0.1925 | 0.2175 | 0.2275 | 0.0625 |
No log | 9.0 | 150 | 1.0389 | 0.7175 | 0.0775 | 0.095 | 0.1975 | 0.25 | 0.385 | 0.0625 |
No log | 9.96 | 166 | 0.9649 | 0.7525 | 0.075 | 0.095 | 0.19 | 0.2975 | 0.42 | 0.0625 |
No log | 10.98 | 183 | 0.9956 | 0.725 | 0.0775 | 0.095 | 0.2325 | 0.3425 | 0.52 | 0.0625 |
No log | 12.0 | 200 | 0.8946 | 0.7575 | 0.075 | 0.095 | 0.23 | 0.3675 | 0.555 | 0.0875 |
No log | 12.96 | 216 | 0.9136 | 0.735 | 0.0775 | 0.095 | 0.275 | 0.4325 | 0.57 | 0.0625 |
No log | 13.98 | 233 | 0.8954 | 0.7725 | 0.0775 | 0.095 | 0.3125 | 0.4625 | 0.57 | 0.1075 |
No log | 15.0 | 250 | 0.9159 | 0.7575 | 0.075 | 0.095 | 0.3325 | 0.4925 | 0.5925 | 0.235 |
No log | 15.96 | 266 | 0.9258 | 0.7775 | 0.08 | 0.095 | 0.3675 | 0.5175 | 0.6175 | 0.34 |
No log | 16.98 | 283 | 0.9848 | 0.7625 | 0.0775 | 0.095 | 0.46 | 0.5525 | 0.6375 | 0.5375 |
No log | 18.0 | 300 | 1.0248 | 0.7575 | 0.0775 | 0.095 | 0.505 | 0.5925 | 0.65 | 0.6275 |
No log | 18.96 | 316 | 1.0362 | 0.7675 | 0.0775 | 0.095 | 0.5325 | 0.6275 | 0.6525 | 0.675 |
No log | 19.98 | 333 | 1.0724 | 0.7475 | 0.0775 | 0.095 | 0.58 | 0.6625 | 0.6575 | 0.6975 |
No log | 21.0 | 350 | 1.1489 | 0.7425 | 0.0775 | 0.095 | 0.6 | 0.675 | 0.6925 | 0.715 |
No log | 21.96 | 366 | 1.1769 | 0.755 | 0.0775 | 0.095 | 0.5725 | 0.6675 | 0.68 | 0.7025 |
No log | 22.98 | 383 | 1.1129 | 0.775 | 0.08 | 0.095 | 0.6125 | 0.685 | 0.695 | 0.7375 |
No log | 24.0 | 400 | 1.2476 | 0.75 | 0.0775 | 0.095 | 0.635 | 0.705 | 0.72 | 0.73 |
No log | 24.96 | 416 | 1.1019 | 0.7825 | 0.0775 | 0.095 | 0.6375 | 0.7275 | 0.7225 | 0.755 |
No log | 25.98 | 433 | 1.2046 | 0.78 | 0.0775 | 0.095 | 0.6425 | 0.7175 | 0.725 | 0.7425 |
No log | 27.0 | 450 | 1.2260 | 0.7825 | 0.0775 | 0.095 | 0.66 | 0.71 | 0.74 | 0.7475 |
No log | 27.96 | 466 | 1.2632 | 0.765 | 0.0775 | 0.095 | 0.6675 | 0.6975 | 0.7275 | 0.7475 |
No log | 28.98 | 483 | 1.2968 | 0.775 | 0.0775 | 0.095 | 0.665 | 0.72 | 0.7275 | 0.7325 |
1.4887 | 30.0 | 500 | 1.3257 | 0.7675 | 0.0825 | 0.095 | 0.6975 | 0.705 | 0.7375 | 0.7475 |
1.4887 | 30.96 | 516 | 1.2935 | 0.7725 | 0.0775 | 0.095 | 0.69 | 0.7175 | 0.7525 | 0.76 |
1.4887 | 31.98 | 533 | 1.3605 | 0.7675 | 0.08 | 0.095 | 0.7 | 0.7275 | 0.755 | 0.7525 |
1.4887 | 33.0 | 550 | 1.3775 | 0.765 | 0.08 | 0.095 | 0.7 | 0.7275 | 0.755 | 0.74 |
1.4887 | 33.96 | 566 | 1.3881 | 0.765 | 0.0775 | 0.095 | 0.6975 | 0.7225 | 0.7475 | 0.755 |
1.4887 | 34.98 | 583 | 1.3496 | 0.77 | 0.075 | 0.095 | 0.715 | 0.735 | 0.7575 | 0.76 |
1.4887 | 36.0 | 600 | 1.4044 | 0.7725 | 0.075 | 0.095 | 0.7075 | 0.7375 | 0.75 | 0.75 |
1.4887 | 36.96 | 616 | 1.4085 | 0.775 | 0.075 | 0.095 | 0.72 | 0.7325 | 0.745 | 0.755 |
1.4887 | 37.98 | 633 | 1.4755 | 0.7675 | 0.075 | 0.095 | 0.7225 | 0.7375 | 0.75 | 0.7475 |
1.4887 | 39.0 | 650 | 1.4363 | 0.7775 | 0.0775 | 0.095 | 0.725 | 0.7425 | 0.755 | 0.7475 |
1.4887 | 39.96 | 666 | 1.4532 | 0.775 | 0.08 | 0.095 | 0.72 | 0.74 | 0.745 | 0.7525 |
1.4887 | 40.98 | 683 | 1.4626 | 0.7725 | 0.075 | 0.095 | 0.73 | 0.7325 | 0.75 | 0.7525 |
1.4887 | 42.0 | 700 | 1.4340 | 0.785 | 0.0775 | 0.095 | 0.725 | 0.7425 | 0.7525 | 0.765 |
1.4887 | 42.96 | 716 | 1.4723 | 0.7725 | 0.0775 | 0.095 | 0.7325 | 0.735 | 0.75 | 0.755 |
1.4887 | 43.98 | 733 | 1.4687 | 0.7725 | 0.0775 | 0.095 | 0.7275 | 0.7475 | 0.75 | 0.7625 |
1.4887 | 45.0 | 750 | 1.4757 | 0.7625 | 0.0775 | 0.095 | 0.7225 | 0.7325 | 0.7375 | 0.74 |
1.4887 | 45.96 | 766 | 1.4801 | 0.77 | 0.08 | 0.095 | 0.7225 | 0.745 | 0.7525 | 0.76 |
1.4887 | 46.98 | 783 | 1.5045 | 0.76 | 0.0775 | 0.095 | 0.725 | 0.735 | 0.7425 | 0.75 |
1.4887 | 48.0 | 800 | 1.5106 | 0.76 | 0.0775 | 0.095 | 0.7275 | 0.74 | 0.7525 | 0.745 |
1.4887 | 48.96 | 816 | 1.4946 | 0.765 | 0.0775 | 0.095 | 0.73 | 0.745 | 0.745 | 0.755 |
1.4887 | 49.98 | 833 | 1.4739 | 0.765 | 0.0775 | 0.095 | 0.7325 | 0.745 | 0.7525 | 0.755 |
1.4887 | 51.0 | 850 | 1.4943 | 0.765 | 0.0775 | 0.095 | 0.7325 | 0.74 | 0.745 | 0.755 |
1.4887 | 51.96 | 866 | 1.5010 | 0.7625 | 0.075 | 0.095 | 0.7275 | 0.74 | 0.755 | 0.76 |
1.4887 | 52.98 | 883 | 1.4976 | 0.765 | 0.075 | 0.095 | 0.73 | 0.74 | 0.745 | 0.76 |
1.4887 | 54.0 | 900 | 1.5025 | 0.76 | 0.075 | 0.095 | 0.725 | 0.7375 | 0.74 | 0.7525 |
1.4887 | 54.96 | 916 | 1.5016 | 0.76 | 0.075 | 0.095 | 0.73 | 0.7375 | 0.745 | 0.75 |
1.4887 | 55.98 | 933 | 1.5024 | 0.76 | 0.075 | 0.095 | 0.7275 | 0.7375 | 0.7425 | 0.7525 |
1.4887 | 57.0 | 950 | 1.5025 | 0.76 | 0.075 | 0.095 | 0.73 | 0.74 | 0.7425 | 0.75 |
1.4887 | 57.6 | 960 | 1.5033 | 0.76 | 0.075 | 0.095 | 0.73 | 0.74 | 0.7425 | 0.7525 |
Framework versions
- Transformers 4.31.0
- Pytorch 2.0.1+cu117
- Datasets 2.13.1
- Tokenizers 0.13.3