<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. -->
perioli_manifesti_v8.1
This model is a fine-tuned version of microsoft/layoutlmv3-base on the sroie dataset. It achieves the following results on the evaluation set:
- Loss: 0.0261
- Precision: 0.9569
- Recall: 0.9737
- F1: 0.9653
- Accuracy: 0.9956
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- training_steps: 5000
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
No log | 0.4 | 100 | 0.1287 | 0.7656 | 0.8050 | 0.7848 | 0.9662 |
No log | 0.79 | 200 | 0.0595 | 0.8683 | 0.912 | 0.8896 | 0.9843 |
No log | 1.19 | 300 | 0.0529 | 0.8628 | 0.9250 | 0.8928 | 0.9850 |
No log | 1.58 | 400 | 0.0325 | 0.9271 | 0.9501 | 0.9385 | 0.9917 |
0.1448 | 1.98 | 500 | 0.0338 | 0.9144 | 0.9482 | 0.9310 | 0.9905 |
0.1448 | 2.37 | 600 | 0.0270 | 0.9445 | 0.9592 | 0.9518 | 0.9932 |
0.1448 | 2.77 | 700 | 0.0270 | 0.9367 | 0.9589 | 0.9477 | 0.9929 |
0.1448 | 3.16 | 800 | 0.0235 | 0.9536 | 0.9638 | 0.9587 | 0.9945 |
0.1448 | 3.56 | 900 | 0.0251 | 0.9423 | 0.9650 | 0.9535 | 0.9940 |
0.0246 | 3.95 | 1000 | 0.0257 | 0.9382 | 0.9665 | 0.9521 | 0.9939 |
0.0246 | 4.35 | 1100 | 0.0245 | 0.9425 | 0.9684 | 0.9553 | 0.9943 |
0.0246 | 4.74 | 1200 | 0.0245 | 0.9468 | 0.9691 | 0.9578 | 0.9947 |
0.0246 | 5.14 | 1300 | 0.0256 | 0.9450 | 0.9688 | 0.9567 | 0.9946 |
0.0246 | 5.53 | 1400 | 0.0204 | 0.9501 | 0.9657 | 0.9579 | 0.9947 |
0.0148 | 5.93 | 1500 | 0.0210 | 0.9568 | 0.9707 | 0.9637 | 0.9953 |
0.0148 | 6.32 | 1600 | 0.0242 | 0.9507 | 0.9703 | 0.9604 | 0.9948 |
0.0148 | 6.72 | 1700 | 0.0237 | 0.9541 | 0.9661 | 0.9601 | 0.9948 |
0.0148 | 7.11 | 1800 | 0.0246 | 0.9449 | 0.9661 | 0.9554 | 0.9941 |
0.0148 | 7.51 | 1900 | 0.0227 | 0.9571 | 0.9699 | 0.9635 | 0.9955 |
0.0092 | 7.91 | 2000 | 0.0242 | 0.9507 | 0.9703 | 0.9604 | 0.9949 |
0.0092 | 8.3 | 2100 | 0.0258 | 0.9476 | 0.9710 | 0.9592 | 0.9947 |
0.0092 | 8.7 | 2200 | 0.0214 | 0.9551 | 0.9726 | 0.9638 | 0.9953 |
0.0092 | 9.09 | 2300 | 0.0232 | 0.9523 | 0.9730 | 0.9625 | 0.9953 |
0.0092 | 9.49 | 2400 | 0.0212 | 0.9515 | 0.9714 | 0.9614 | 0.9951 |
0.0064 | 9.88 | 2500 | 0.0219 | 0.9572 | 0.9722 | 0.9647 | 0.9955 |
0.0064 | 10.28 | 2600 | 0.0239 | 0.9566 | 0.9730 | 0.9647 | 0.9955 |
0.0064 | 10.67 | 2700 | 0.0221 | 0.9601 | 0.9726 | 0.9663 | 0.9958 |
0.0064 | 11.07 | 2800 | 0.0210 | 0.9572 | 0.9710 | 0.9641 | 0.9954 |
0.0064 | 11.46 | 2900 | 0.0267 | 0.9554 | 0.9722 | 0.9637 | 0.9952 |
0.0047 | 11.86 | 3000 | 0.0247 | 0.9533 | 0.9714 | 0.9623 | 0.9951 |
0.0047 | 12.25 | 3100 | 0.0254 | 0.9572 | 0.9718 | 0.9645 | 0.9954 |
0.0047 | 12.65 | 3200 | 0.0239 | 0.9533 | 0.9722 | 0.9627 | 0.9954 |
0.0047 | 13.04 | 3300 | 0.0233 | 0.9552 | 0.9737 | 0.9643 | 0.9956 |
0.0047 | 13.44 | 3400 | 0.0226 | 0.9569 | 0.9733 | 0.9651 | 0.9956 |
0.0037 | 13.83 | 3500 | 0.0241 | 0.9552 | 0.9741 | 0.9645 | 0.9956 |
0.0037 | 14.23 | 3600 | 0.0240 | 0.9565 | 0.9726 | 0.9645 | 0.9954 |
0.0037 | 14.62 | 3700 | 0.0218 | 0.9577 | 0.9737 | 0.9656 | 0.9958 |
0.0037 | 15.02 | 3800 | 0.0213 | 0.9595 | 0.9737 | 0.9665 | 0.9958 |
0.0037 | 15.42 | 3900 | 0.0237 | 0.9540 | 0.9726 | 0.9632 | 0.9953 |
0.0026 | 15.81 | 4000 | 0.0237 | 0.9576 | 0.9726 | 0.9650 | 0.9956 |
0.0026 | 16.21 | 4100 | 0.0253 | 0.9551 | 0.9733 | 0.9642 | 0.9955 |
0.0026 | 16.6 | 4200 | 0.0249 | 0.9558 | 0.9722 | 0.9639 | 0.9953 |
0.0026 | 17.0 | 4300 | 0.0239 | 0.9562 | 0.9722 | 0.9641 | 0.9955 |
0.0026 | 17.39 | 4400 | 0.0245 | 0.9577 | 0.9741 | 0.9658 | 0.9957 |
0.002 | 17.79 | 4500 | 0.0248 | 0.9588 | 0.9745 | 0.9666 | 0.9959 |
0.002 | 18.18 | 4600 | 0.0260 | 0.9569 | 0.9718 | 0.9643 | 0.9955 |
0.002 | 18.58 | 4700 | 0.0251 | 0.9581 | 0.9745 | 0.9662 | 0.9958 |
0.002 | 18.97 | 4800 | 0.0260 | 0.9581 | 0.9745 | 0.9662 | 0.9958 |
0.002 | 19.37 | 4900 | 0.0260 | 0.9569 | 0.9737 | 0.9653 | 0.9956 |
0.0015 | 19.76 | 5000 | 0.0261 | 0.9569 | 0.9737 | 0.9653 | 0.9956 |
Framework versions
- Transformers 4.28.0
- Pytorch 2.0.1+cu118
- Datasets 2.2.2
- Tokenizers 0.13.3