<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. -->
perioli_manifesti_v8.2
This model is a fine-tuned version of microsoft/layoutlmv3-base on the sroie dataset. It achieves the following results on the evaluation set:
- Loss: 0.0241
- Precision: 0.9631
- Recall: 0.9770
- F1: 0.9700
- Accuracy: 0.9964
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- training_steps: 5000
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
No log | 0.37 | 100 | 0.1368 | 0.7334 | 0.6575 | 0.6934 | 0.9545 |
No log | 0.74 | 200 | 0.0733 | 0.8189 | 0.8899 | 0.8529 | 0.9775 |
No log | 1.11 | 300 | 0.0420 | 0.8868 | 0.9296 | 0.9077 | 0.9872 |
No log | 1.48 | 400 | 0.0315 | 0.9338 | 0.9466 | 0.9402 | 0.9915 |
0.1641 | 1.85 | 500 | 0.0306 | 0.9294 | 0.9470 | 0.9381 | 0.9917 |
0.1641 | 2.22 | 600 | 0.0268 | 0.9452 | 0.9526 | 0.9489 | 0.9934 |
0.1641 | 2.59 | 700 | 0.0250 | 0.9478 | 0.9492 | 0.9485 | 0.9935 |
0.1641 | 2.96 | 800 | 0.0254 | 0.9352 | 0.9622 | 0.9485 | 0.9936 |
0.1641 | 3.33 | 900 | 0.0250 | 0.9384 | 0.9648 | 0.9514 | 0.9938 |
0.0266 | 3.7 | 1000 | 0.0265 | 0.9247 | 0.9600 | 0.9420 | 0.9927 |
0.0266 | 4.07 | 1100 | 0.0231 | 0.9450 | 0.9681 | 0.9564 | 0.9944 |
0.0266 | 4.44 | 1200 | 0.0210 | 0.9527 | 0.9700 | 0.9612 | 0.9952 |
0.0266 | 4.81 | 1300 | 0.0204 | 0.9609 | 0.9648 | 0.9628 | 0.9952 |
0.0266 | 5.19 | 1400 | 0.0240 | 0.9509 | 0.9685 | 0.9596 | 0.9950 |
0.0151 | 5.56 | 1500 | 0.0214 | 0.9558 | 0.9703 | 0.9630 | 0.9952 |
0.0151 | 5.93 | 1600 | 0.0212 | 0.9485 | 0.9700 | 0.9591 | 0.9950 |
0.0151 | 6.3 | 1700 | 0.0204 | 0.9520 | 0.9711 | 0.9615 | 0.9953 |
0.0151 | 6.67 | 1800 | 0.0238 | 0.9436 | 0.9681 | 0.9557 | 0.9944 |
0.0151 | 7.04 | 1900 | 0.0266 | 0.9356 | 0.9696 | 0.9523 | 0.9937 |
0.0105 | 7.41 | 2000 | 0.0186 | 0.9616 | 0.9748 | 0.9682 | 0.9962 |
0.0105 | 7.78 | 2100 | 0.0188 | 0.9634 | 0.9759 | 0.9696 | 0.9964 |
0.0105 | 8.15 | 2200 | 0.0229 | 0.9566 | 0.9726 | 0.9645 | 0.9955 |
0.0105 | 8.52 | 2300 | 0.0198 | 0.9663 | 0.9774 | 0.9718 | 0.9966 |
0.0105 | 8.89 | 2400 | 0.0195 | 0.9598 | 0.9737 | 0.9667 | 0.9961 |
0.0067 | 9.26 | 2500 | 0.0203 | 0.9623 | 0.9755 | 0.9689 | 0.9962 |
0.0067 | 9.63 | 2600 | 0.0211 | 0.9537 | 0.9692 | 0.9614 | 0.9953 |
0.0067 | 10.0 | 2700 | 0.0210 | 0.9553 | 0.9733 | 0.9642 | 0.9958 |
0.0067 | 10.37 | 2800 | 0.0204 | 0.9577 | 0.9733 | 0.9654 | 0.9960 |
0.0067 | 10.74 | 2900 | 0.0206 | 0.9566 | 0.9729 | 0.9647 | 0.9958 |
0.0054 | 11.11 | 3000 | 0.0203 | 0.9627 | 0.9770 | 0.9698 | 0.9964 |
0.0054 | 11.48 | 3100 | 0.0211 | 0.9546 | 0.9744 | 0.9644 | 0.9956 |
0.0054 | 11.85 | 3200 | 0.0187 | 0.9620 | 0.9748 | 0.9683 | 0.9962 |
0.0054 | 12.22 | 3300 | 0.0188 | 0.9627 | 0.9766 | 0.9696 | 0.9962 |
0.0054 | 12.59 | 3400 | 0.0206 | 0.9578 | 0.9752 | 0.9664 | 0.9960 |
0.0037 | 12.96 | 3500 | 0.0233 | 0.9588 | 0.9748 | 0.9667 | 0.9960 |
0.0037 | 13.33 | 3600 | 0.0234 | 0.9574 | 0.9748 | 0.9660 | 0.9958 |
0.0037 | 13.7 | 3700 | 0.0195 | 0.9652 | 0.9759 | 0.9705 | 0.9964 |
0.0037 | 14.07 | 3800 | 0.0224 | 0.9616 | 0.9733 | 0.9674 | 0.9961 |
0.0037 | 14.44 | 3900 | 0.0224 | 0.9620 | 0.9752 | 0.9685 | 0.9962 |
0.0025 | 14.81 | 4000 | 0.0262 | 0.9595 | 0.9755 | 0.9675 | 0.9960 |
0.0025 | 15.19 | 4100 | 0.0220 | 0.9627 | 0.9755 | 0.9691 | 0.9962 |
0.0025 | 15.56 | 4200 | 0.0231 | 0.9631 | 0.9770 | 0.9700 | 0.9964 |
0.0025 | 15.93 | 4300 | 0.0239 | 0.9606 | 0.9755 | 0.9680 | 0.9962 |
0.0025 | 16.3 | 4400 | 0.0235 | 0.9617 | 0.9759 | 0.9687 | 0.9962 |
0.002 | 16.67 | 4500 | 0.0246 | 0.9599 | 0.9748 | 0.9673 | 0.9959 |
0.002 | 17.04 | 4600 | 0.0231 | 0.9631 | 0.9763 | 0.9696 | 0.9964 |
0.002 | 17.41 | 4700 | 0.0245 | 0.9592 | 0.9752 | 0.9671 | 0.9960 |
0.002 | 17.78 | 4800 | 0.0239 | 0.9620 | 0.9766 | 0.9693 | 0.9963 |
0.002 | 18.15 | 4900 | 0.0242 | 0.9631 | 0.9770 | 0.9700 | 0.9964 |
0.0016 | 18.52 | 5000 | 0.0241 | 0.9631 | 0.9770 | 0.9700 | 0.9964 |
Framework versions
- Transformers 4.28.0
- Pytorch 2.0.1+cu118
- Datasets 2.2.2
- Tokenizers 0.13.3