<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. -->
EElayoutlmv3_jordyvl_rvl_cdip_100_examples_per_class_2023-08-23_text_vision_enc_9_10_11_12_ramp
This model is a fine-tuned version of microsoft/layoutlmv3-base on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 1.3988
- Accuracy: 0.78
- Exit 0 Accuracy: 0.0775
- Exit 1 Accuracy: 0.0925
- Exit 2 Accuracy: 0.775
- Exit 3 Accuracy: 0.7775
- Exit 4 Accuracy: 0.78
- Exit 5 Accuracy: 0.78
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 2
- eval_batch_size: 1
- seed: 42
- gradient_accumulation_steps: 24
- total_train_batch_size: 48
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 60
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | Exit 0 Accuracy | Exit 1 Accuracy | Exit 2 Accuracy | Exit 3 Accuracy | Exit 4 Accuracy | Exit 5 Accuracy |
---|---|---|---|---|---|---|---|---|---|---|
No log | 0.96 | 16 | 2.6732 | 0.1725 | 0.085 | 0.0875 | 0.0625 | 0.0625 | 0.0625 | 0.025 |
No log | 1.98 | 33 | 2.4561 | 0.2675 | 0.075 | 0.09 | 0.0625 | 0.0625 | 0.0625 | 0.14 |
No log | 3.0 | 50 | 2.2694 | 0.3275 | 0.0825 | 0.09 | 0.0625 | 0.0625 | 0.0625 | 0.225 |
No log | 3.96 | 66 | 2.0390 | 0.4075 | 0.0775 | 0.09 | 0.0625 | 0.0625 | 0.0625 | 0.31 |
No log | 4.98 | 83 | 1.7550 | 0.5525 | 0.08 | 0.09 | 0.0625 | 0.0625 | 0.0625 | 0.4125 |
No log | 6.0 | 100 | 1.5468 | 0.605 | 0.08 | 0.09 | 0.0625 | 0.0625 | 0.0625 | 0.46 |
No log | 6.96 | 116 | 1.3226 | 0.6475 | 0.08 | 0.0875 | 0.0625 | 0.0625 | 0.0625 | 0.5725 |
No log | 7.98 | 133 | 1.2189 | 0.6625 | 0.0775 | 0.0875 | 0.0625 | 0.0625 | 0.0625 | 0.5725 |
No log | 9.0 | 150 | 1.0980 | 0.71 | 0.0775 | 0.0875 | 0.0625 | 0.0625 | 0.0625 | 0.6175 |
No log | 9.96 | 166 | 1.0513 | 0.7125 | 0.0775 | 0.0875 | 0.0625 | 0.0625 | 0.0625 | 0.6675 |
No log | 10.98 | 183 | 1.0210 | 0.7175 | 0.0775 | 0.0875 | 0.0625 | 0.0625 | 0.0625 | 0.665 |
No log | 12.0 | 200 | 0.9739 | 0.7325 | 0.08 | 0.0875 | 0.0625 | 0.0625 | 0.0625 | 0.69 |
No log | 12.96 | 216 | 0.9843 | 0.735 | 0.08 | 0.0875 | 0.0625 | 0.0625 | 0.075 | 0.6925 |
No log | 13.98 | 233 | 0.9552 | 0.7375 | 0.0775 | 0.0875 | 0.0625 | 0.0775 | 0.09 | 0.725 |
No log | 15.0 | 250 | 0.9733 | 0.7425 | 0.0775 | 0.0875 | 0.065 | 0.1 | 0.1225 | 0.735 |
No log | 15.96 | 266 | 1.0124 | 0.7425 | 0.075 | 0.09 | 0.0825 | 0.1575 | 0.2025 | 0.7275 |
No log | 16.98 | 283 | 1.0410 | 0.74 | 0.0775 | 0.09 | 0.1125 | 0.1675 | 0.33 | 0.735 |
No log | 18.0 | 300 | 1.0557 | 0.7575 | 0.0775 | 0.09 | 0.12 | 0.215 | 0.6875 | 0.7475 |
No log | 18.96 | 316 | 1.0908 | 0.7525 | 0.075 | 0.09 | 0.175 | 0.3075 | 0.72 | 0.745 |
No log | 19.98 | 333 | 1.0982 | 0.755 | 0.075 | 0.09 | 0.245 | 0.385 | 0.7475 | 0.7525 |
No log | 21.0 | 350 | 1.1223 | 0.7475 | 0.08 | 0.09 | 0.2975 | 0.6975 | 0.7525 | 0.7625 |
No log | 21.96 | 366 | 1.1636 | 0.745 | 0.0775 | 0.09 | 0.51 | 0.73 | 0.7525 | 0.75 |
No log | 22.98 | 383 | 1.1899 | 0.755 | 0.0775 | 0.09 | 0.5825 | 0.7525 | 0.76 | 0.7525 |
No log | 24.0 | 400 | 1.2495 | 0.7475 | 0.0775 | 0.09 | 0.65 | 0.735 | 0.75 | 0.745 |
No log | 24.96 | 416 | 1.2234 | 0.7675 | 0.0825 | 0.09 | 0.705 | 0.7525 | 0.77 | 0.7675 |
No log | 25.98 | 433 | 1.3483 | 0.75 | 0.08 | 0.09 | 0.735 | 0.7375 | 0.7475 | 0.75 |
No log | 27.0 | 450 | 1.2518 | 0.7775 | 0.0775 | 0.09 | 0.76 | 0.7675 | 0.7775 | 0.78 |
No log | 27.96 | 466 | 1.2421 | 0.78 | 0.0775 | 0.09 | 0.775 | 0.7725 | 0.7775 | 0.78 |
No log | 28.98 | 483 | 1.3018 | 0.7775 | 0.075 | 0.09 | 0.7675 | 0.775 | 0.7825 | 0.7775 |
1.4084 | 30.0 | 500 | 1.2753 | 0.785 | 0.0925 | 0.09 | 0.775 | 0.7775 | 0.78 | 0.785 |
1.4084 | 30.96 | 516 | 1.3205 | 0.78 | 0.0775 | 0.09 | 0.7725 | 0.78 | 0.7775 | 0.78 |
1.4084 | 31.98 | 533 | 1.3406 | 0.775 | 0.08 | 0.09 | 0.765 | 0.77 | 0.775 | 0.775 |
1.4084 | 33.0 | 550 | 1.3088 | 0.7725 | 0.0775 | 0.09 | 0.7825 | 0.78 | 0.775 | 0.7725 |
1.4084 | 33.96 | 566 | 1.3133 | 0.7775 | 0.08 | 0.0925 | 0.775 | 0.78 | 0.78 | 0.7775 |
1.4084 | 34.98 | 583 | 1.3377 | 0.785 | 0.075 | 0.0925 | 0.7825 | 0.7775 | 0.78 | 0.785 |
1.4084 | 36.0 | 600 | 1.3352 | 0.78 | 0.0775 | 0.0925 | 0.7775 | 0.7775 | 0.7775 | 0.78 |
1.4084 | 36.96 | 616 | 1.3348 | 0.7775 | 0.0775 | 0.0925 | 0.7775 | 0.775 | 0.775 | 0.7775 |
1.4084 | 37.98 | 633 | 1.3719 | 0.7775 | 0.08 | 0.0925 | 0.7775 | 0.7775 | 0.7775 | 0.7775 |
1.4084 | 39.0 | 650 | 1.3702 | 0.7775 | 0.0775 | 0.0925 | 0.7775 | 0.775 | 0.775 | 0.78 |
1.4084 | 39.96 | 666 | 1.3670 | 0.78 | 0.085 | 0.0925 | 0.78 | 0.775 | 0.7775 | 0.78 |
1.4084 | 40.98 | 683 | 1.3672 | 0.78 | 0.075 | 0.0925 | 0.7825 | 0.78 | 0.78 | 0.78 |
1.4084 | 42.0 | 700 | 1.3799 | 0.7825 | 0.08 | 0.0925 | 0.7825 | 0.7775 | 0.78 | 0.785 |
1.4084 | 42.96 | 716 | 1.3860 | 0.78 | 0.0775 | 0.0925 | 0.78 | 0.775 | 0.775 | 0.7775 |
1.4084 | 43.98 | 733 | 1.3926 | 0.78 | 0.0775 | 0.0925 | 0.775 | 0.7775 | 0.775 | 0.7775 |
1.4084 | 45.0 | 750 | 1.3853 | 0.7775 | 0.0775 | 0.0925 | 0.7775 | 0.775 | 0.7775 | 0.78 |
1.4084 | 45.96 | 766 | 1.3883 | 0.78 | 0.0825 | 0.0925 | 0.775 | 0.7775 | 0.78 | 0.78 |
1.4084 | 46.98 | 783 | 1.3877 | 0.78 | 0.08 | 0.0925 | 0.7775 | 0.775 | 0.78 | 0.78 |
1.4084 | 48.0 | 800 | 1.3859 | 0.78 | 0.0775 | 0.0925 | 0.7775 | 0.7775 | 0.7825 | 0.78 |
1.4084 | 48.96 | 816 | 1.3878 | 0.78 | 0.0775 | 0.0925 | 0.7775 | 0.775 | 0.78 | 0.78 |
1.4084 | 49.98 | 833 | 1.3851 | 0.78 | 0.0775 | 0.0925 | 0.78 | 0.775 | 0.78 | 0.78 |
1.4084 | 51.0 | 850 | 1.3872 | 0.78 | 0.0775 | 0.0925 | 0.775 | 0.7775 | 0.78 | 0.78 |
1.4084 | 51.96 | 866 | 1.3914 | 0.78 | 0.0775 | 0.0925 | 0.775 | 0.775 | 0.78 | 0.78 |
1.4084 | 52.98 | 883 | 1.3955 | 0.78 | 0.0775 | 0.0925 | 0.775 | 0.7775 | 0.78 | 0.78 |
1.4084 | 54.0 | 900 | 1.3955 | 0.78 | 0.0775 | 0.0925 | 0.775 | 0.7775 | 0.78 | 0.78 |
1.4084 | 54.96 | 916 | 1.3979 | 0.78 | 0.0775 | 0.0925 | 0.775 | 0.7775 | 0.78 | 0.78 |
1.4084 | 55.98 | 933 | 1.3987 | 0.78 | 0.0775 | 0.0925 | 0.775 | 0.7775 | 0.78 | 0.78 |
1.4084 | 57.0 | 950 | 1.3988 | 0.78 | 0.0775 | 0.0925 | 0.775 | 0.7775 | 0.78 | 0.78 |
1.4084 | 57.6 | 960 | 1.3988 | 0.78 | 0.0775 | 0.0925 | 0.775 | 0.7775 | 0.78 | 0.78 |
Framework versions
- Transformers 4.31.0
- Pytorch 2.0.1+cu117
- Datasets 2.13.1
- Tokenizers 0.13.3