<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. -->
BEiT-b0-finetuned-metalography_V1
This model is a fine-tuned version of ironchanchellor/BEiT-b0-finetuned-metalography_V1 on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.0534
- Mean Iou: 0.7698
- Mean Accuracy: 0.9392
- Overall Accuracy: 0.9862
- Accuracy Background: nan
- Accuracy Haz: 0.9845
- Accuracy Matrix: 0.9860
- Accuracy Porosity: 0.7693
- Accuracy Carbides: 0.9660
- Accuracy Substrate: 0.9902
- Iou Background: 0.0
- Iou Haz: 0.9719
- Iou Matrix: 0.9690
- Iou Porosity: 0.7544
- Iou Carbides: 0.9446
- Iou Substrate: 0.9790
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 6e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 8
Training results
Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Background | Accuracy Haz | Accuracy Matrix | Accuracy Porosity | Accuracy Carbides | Accuracy Substrate | Iou Background | Iou Haz | Iou Matrix | Iou Porosity | Iou Carbides | Iou Substrate |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0.3113 | 0.17 | 200 | 0.2631 | 0.6813 | 0.8560 | 0.9403 | nan | 0.9300 | 0.9661 | 0.5554 | 0.8787 | 0.9498 | 0.0 | 0.8633 | 0.9337 | 0.5396 | 0.8484 | 0.9027 |
0.1329 | 0.34 | 400 | 0.3384 | 0.6355 | 0.8242 | 0.9010 | nan | 0.9831 | 0.9765 | 0.4140 | 0.9300 | 0.8170 | 0.0 | 0.8041 | 0.9011 | 0.4062 | 0.8925 | 0.8094 |
0.1102 | 0.51 | 600 | 0.1319 | 0.6913 | 0.8736 | 0.9618 | nan | 0.9676 | 0.9445 | 0.5080 | 0.9887 | 0.9592 | 0.0 | 0.9227 | 0.9208 | 0.5033 | 0.8597 | 0.9412 |
0.0182 | 0.68 | 800 | 0.2033 | 0.7063 | 0.8890 | 0.9575 | nan | 0.9293 | 0.9404 | 0.6076 | 0.9873 | 0.9806 | 0.0 | 0.9055 | 0.9344 | 0.5798 | 0.8880 | 0.9304 |
1.1404 | 0.85 | 1000 | 0.1376 | 0.7193 | 0.8875 | 0.9693 | nan | 0.9771 | 0.9856 | 0.5929 | 0.9157 | 0.9663 | 0.0 | 0.9348 | 0.9473 | 0.5812 | 0.9024 | 0.9503 |
1.673 | 1.02 | 1200 | 0.2288 | 0.7355 | 0.9290 | 0.9550 | nan | 0.9842 | 0.9694 | 0.7899 | 0.9746 | 0.9271 | 0.0 | 0.8997 | 0.9528 | 0.7220 | 0.9214 | 0.9168 |
0.1769 | 1.19 | 1400 | 0.3643 | 0.6840 | 0.8676 | 0.9132 | nan | 0.7880 | 0.9777 | 0.6237 | 0.9594 | 0.9894 | 0.0 | 0.7768 | 0.9581 | 0.5896 | 0.9289 | 0.8507 |
0.1443 | 1.35 | 1600 | 0.1294 | 0.7224 | 0.8898 | 0.9733 | nan | 0.9780 | 0.9908 | 0.5803 | 0.9283 | 0.9715 | 0.0 | 0.9439 | 0.9517 | 0.5662 | 0.9167 | 0.9561 |
0.0853 | 1.52 | 1800 | 0.1969 | 0.7185 | 0.8860 | 0.9633 | nan | 0.9255 | 0.9910 | 0.6207 | 0.8986 | 0.9940 | 0.0 | 0.9179 | 0.9438 | 0.6166 | 0.8922 | 0.9406 |
0.016 | 1.69 | 2000 | 0.3721 | 0.7342 | 0.9092 | 0.9627 | nan | 0.9242 | 0.9666 | 0.6944 | 0.9695 | 0.9913 | 0.0 | 0.9133 | 0.9517 | 0.6838 | 0.9205 | 0.9358 |
0.0799 | 1.86 | 2200 | 0.0765 | 0.7476 | 0.9155 | 0.9811 | nan | 0.9781 | 0.9821 | 0.6674 | 0.9639 | 0.9858 | 0.0 | 0.9603 | 0.9622 | 0.6607 | 0.9322 | 0.9704 |
0.0484 | 2.03 | 2400 | 0.1077 | 0.7449 | 0.9166 | 0.9738 | nan | 0.9741 | 0.9799 | 0.6936 | 0.9614 | 0.9742 | 0.0 | 0.9419 | 0.9639 | 0.6774 | 0.9307 | 0.9554 |
5.8301 | 2.2 | 2600 | 0.1588 | 0.7200 | 0.8966 | 0.9671 | nan | 0.9642 | 0.9474 | 0.6158 | 0.9824 | 0.9729 | 0.0 | 0.9315 | 0.9399 | 0.5986 | 0.9022 | 0.9475 |
0.0051 | 2.37 | 2800 | 0.1625 | 0.7429 | 0.9194 | 0.9670 | nan | 0.9399 | 0.9698 | 0.7236 | 0.9770 | 0.9866 | 0.0 | 0.9234 | 0.9592 | 0.7050 | 0.9262 | 0.9435 |
0.0722 | 2.54 | 3000 | 0.1039 | 0.7401 | 0.9078 | 0.9776 | nan | 0.9917 | 0.9771 | 0.6332 | 0.9683 | 0.9686 | 0.0 | 0.9523 | 0.9615 | 0.6296 | 0.9340 | 0.9631 |
0.0318 | 2.71 | 3200 | 0.1010 | 0.7583 | 0.9326 | 0.9759 | nan | 0.9688 | 0.9798 | 0.7620 | 0.9713 | 0.9813 | 0.0 | 0.9455 | 0.9643 | 0.7433 | 0.9373 | 0.9591 |
0.0154 | 2.88 | 3400 | 0.1191 | 0.7517 | 0.9274 | 0.9760 | nan | 0.9701 | 0.9693 | 0.7312 | 0.9848 | 0.9817 | 0.0 | 0.9472 | 0.9606 | 0.7123 | 0.9303 | 0.9600 |
0.0788 | 3.05 | 3600 | 0.0925 | 0.7553 | 0.9391 | 0.9790 | nan | 0.9736 | 0.9493 | 0.7925 | 0.9908 | 0.9893 | 0.0 | 0.9593 | 0.9448 | 0.7528 | 0.9053 | 0.9699 |
0.1632 | 3.22 | 3800 | 0.0994 | 0.7485 | 0.9171 | 0.9775 | nan | 0.9869 | 0.9819 | 0.6819 | 0.9633 | 0.9714 | 0.0 | 0.9505 | 0.9641 | 0.6774 | 0.9369 | 0.9620 |
0.8963 | 3.39 | 4000 | 0.1258 | 0.7515 | 0.9287 | 0.9673 | nan | 0.9711 | 0.9781 | 0.7623 | 0.9701 | 0.9619 | 0.0 | 0.9251 | 0.9634 | 0.7444 | 0.9348 | 0.9414 |
0.0082 | 3.56 | 4200 | 0.1316 | 0.7540 | 0.9392 | 0.9745 | nan | 0.9841 | 0.9621 | 0.7948 | 0.9860 | 0.9690 | 0.0 | 0.9456 | 0.9554 | 0.7435 | 0.9216 | 0.9576 |
0.2648 | 3.73 | 4400 | 0.0968 | 0.7631 | 0.9364 | 0.9799 | nan | 0.9708 | 0.9812 | 0.7741 | 0.9678 | 0.9884 | 0.0 | 0.9559 | 0.9665 | 0.7498 | 0.9393 | 0.9670 |
0.0396 | 3.9 | 4600 | 0.0703 | 0.7658 | 0.9362 | 0.9836 | nan | 0.9737 | 0.9848 | 0.7721 | 0.9561 | 0.9946 | 0.0 | 0.9662 | 0.9649 | 0.7538 | 0.9349 | 0.9751 |
0.0571 | 4.06 | 4800 | 0.0970 | 0.7613 | 0.9357 | 0.9798 | nan | 0.9869 | 0.9827 | 0.7649 | 0.9686 | 0.9753 | 0.0 | 0.9562 | 0.9663 | 0.7391 | 0.9404 | 0.9660 |
0.0316 | 4.23 | 5000 | 0.1017 | 0.7450 | 0.9128 | 0.9769 | nan | 0.9582 | 0.9756 | 0.6625 | 0.9749 | 0.9926 | 0.0 | 0.9483 | 0.9631 | 0.6561 | 0.9403 | 0.9619 |
0.0789 | 4.4 | 5200 | 0.0719 | 0.7679 | 0.9416 | 0.9831 | nan | 0.9765 | 0.9775 | 0.7851 | 0.9781 | 0.9906 | 0.0 | 0.9643 | 0.9665 | 0.7637 | 0.9394 | 0.9735 |
0.0689 | 4.57 | 5400 | 0.0739 | 0.7601 | 0.9289 | 0.9823 | nan | 0.9864 | 0.9851 | 0.7320 | 0.9592 | 0.9817 | 0.0 | 0.9629 | 0.9659 | 0.7206 | 0.9396 | 0.9719 |
0.0886 | 4.74 | 5600 | 0.1535 | 0.7577 | 0.9277 | 0.9778 | nan | 0.9587 | 0.9858 | 0.7367 | 0.9647 | 0.9926 | 0.0 | 0.9495 | 0.9669 | 0.7257 | 0.9414 | 0.9627 |
0.0887 | 4.91 | 5800 | 0.0821 | 0.7646 | 0.9358 | 0.9814 | nan | 0.9916 | 0.9876 | 0.7630 | 0.9619 | 0.9748 | 0.0 | 0.9598 | 0.9682 | 0.7479 | 0.9424 | 0.9690 |
0.0015 | 5.08 | 6000 | 0.0604 | 0.7617 | 0.9297 | 0.9843 | nan | 0.9857 | 0.9832 | 0.7222 | 0.9720 | 0.9854 | 0.0 | 0.9667 | 0.9683 | 0.7154 | 0.9449 | 0.9751 |
0.1276 | 5.25 | 6200 | 0.0907 | 0.7591 | 0.9300 | 0.9791 | nan | 0.9732 | 0.9824 | 0.7404 | 0.9697 | 0.9844 | 0.0 | 0.9535 | 0.9672 | 0.7270 | 0.9418 | 0.9651 |
0.0356 | 5.42 | 6400 | 0.1027 | 0.7541 | 0.9275 | 0.9749 | nan | 0.9938 | 0.9810 | 0.7298 | 0.9736 | 0.9594 | 0.0 | 0.9438 | 0.9671 | 0.7152 | 0.9432 | 0.9554 |
0.0359 | 5.59 | 6600 | 0.1316 | 0.7561 | 0.9244 | 0.9790 | nan | 0.9625 | 0.9860 | 0.7161 | 0.9654 | 0.9921 | 0.0 | 0.9524 | 0.9682 | 0.7078 | 0.9436 | 0.9648 |
0.0085 | 5.76 | 6800 | 0.0660 | 0.7715 | 0.9442 | 0.9859 | nan | 0.9834 | 0.9788 | 0.7914 | 0.9762 | 0.9910 | 0.0 | 0.9717 | 0.9679 | 0.7676 | 0.9427 | 0.9789 |
0.0351 | 5.93 | 7000 | 0.0609 | 0.7633 | 0.9317 | 0.9843 | nan | 0.9797 | 0.9758 | 0.7367 | 0.9748 | 0.9916 | 0.0 | 0.9689 | 0.9639 | 0.7286 | 0.9417 | 0.9768 |
0.0185 | 6.1 | 7200 | 0.0520 | 0.7718 | 0.9442 | 0.9857 | nan | 0.9923 | 0.9833 | 0.7905 | 0.9720 | 0.9831 | 0.0 | 0.9707 | 0.9690 | 0.7687 | 0.9445 | 0.9777 |
0.51 | 6.27 | 7400 | 0.0642 | 0.7717 | 0.9435 | 0.9846 | nan | 0.9746 | 0.9826 | 0.7921 | 0.9741 | 0.9943 | 0.0 | 0.9671 | 0.9692 | 0.7729 | 0.9451 | 0.9757 |
0.0246 | 6.44 | 7600 | 0.0608 | 0.7683 | 0.9389 | 0.9849 | nan | 0.9879 | 0.9831 | 0.7658 | 0.9727 | 0.9848 | 0.0 | 0.9686 | 0.9688 | 0.7516 | 0.9445 | 0.9762 |
0.1015 | 6.6 | 7800 | 0.0408 | 0.7716 | 0.9408 | 0.9882 | nan | 0.9901 | 0.9859 | 0.7704 | 0.9679 | 0.9900 | 0.0 | 0.9771 | 0.9699 | 0.7545 | 0.9452 | 0.9829 |
0.0598 | 6.77 | 8000 | 0.0454 | 0.7639 | 0.9319 | 0.9876 | nan | 0.9871 | 0.9823 | 0.7271 | 0.9713 | 0.9917 | 0.0 | 0.9764 | 0.9688 | 0.7117 | 0.9441 | 0.9824 |
0.002 | 6.94 | 8200 | 0.0543 | 0.7702 | 0.9398 | 0.9864 | nan | 0.9819 | 0.9883 | 0.7810 | 0.9544 | 0.9936 | 0.0 | 0.9735 | 0.9657 | 0.7636 | 0.9382 | 0.9804 |
0.0021 | 7.11 | 8400 | 0.0827 | 0.7736 | 0.9449 | 0.9873 | nan | 0.9819 | 0.9831 | 0.7916 | 0.9735 | 0.9944 | 0.0 | 0.9745 | 0.9697 | 0.7698 | 0.9463 | 0.9812 |
0.0008 | 7.28 | 8600 | 0.0530 | 0.7691 | 0.9391 | 0.9865 | nan | 0.9843 | 0.9808 | 0.7629 | 0.9764 | 0.9912 | 0.0 | 0.9728 | 0.9687 | 0.7487 | 0.9447 | 0.9798 |
0.0113 | 7.45 | 8800 | 0.0486 | 0.7696 | 0.9382 | 0.9876 | nan | 0.9889 | 0.9849 | 0.7578 | 0.9694 | 0.9898 | 0.0 | 0.9756 | 0.9689 | 0.7464 | 0.9451 | 0.9819 |
0.0014 | 7.62 | 9000 | 0.0553 | 0.7743 | 0.9476 | 0.9863 | nan | 0.9841 | 0.9825 | 0.8066 | 0.9740 | 0.9908 | 0.0 | 0.9720 | 0.9696 | 0.7788 | 0.9464 | 0.9792 |
0.0474 | 7.79 | 9200 | 0.0442 | 0.7704 | 0.9393 | 0.9872 | nan | 0.9890 | 0.9862 | 0.7668 | 0.9654 | 0.9891 | 0.0 | 0.9747 | 0.9686 | 0.7541 | 0.9439 | 0.9811 |
0.0278 | 7.96 | 9400 | 0.0534 | 0.7698 | 0.9392 | 0.9862 | nan | 0.9845 | 0.9860 | 0.7693 | 0.9660 | 0.9902 | 0.0 | 0.9719 | 0.9690 | 0.7544 | 0.9446 | 0.9790 |
Framework versions
- Transformers 4.32.0
- Pytorch 2.0.1+cu118
- Datasets 2.14.4
- Tokenizers 0.13.3