generated_from_trainer

<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. -->

BEiT-b0-finetuned-metalography_V1

This model is a fine-tuned version of ironchanchellor/BEiT-b0-finetuned-metalography_V1 on an unknown dataset. It achieves the following results on the evaluation set:

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

Training results

Training Loss Epoch Step Validation Loss Mean Iou Mean Accuracy Overall Accuracy Accuracy Background Accuracy Haz Accuracy Matrix Accuracy Porosity Accuracy Carbides Accuracy Substrate Iou Background Iou Haz Iou Matrix Iou Porosity Iou Carbides Iou Substrate
0.3113 0.17 200 0.2631 0.6813 0.8560 0.9403 nan 0.9300 0.9661 0.5554 0.8787 0.9498 0.0 0.8633 0.9337 0.5396 0.8484 0.9027
0.1329 0.34 400 0.3384 0.6355 0.8242 0.9010 nan 0.9831 0.9765 0.4140 0.9300 0.8170 0.0 0.8041 0.9011 0.4062 0.8925 0.8094
0.1102 0.51 600 0.1319 0.6913 0.8736 0.9618 nan 0.9676 0.9445 0.5080 0.9887 0.9592 0.0 0.9227 0.9208 0.5033 0.8597 0.9412
0.0182 0.68 800 0.2033 0.7063 0.8890 0.9575 nan 0.9293 0.9404 0.6076 0.9873 0.9806 0.0 0.9055 0.9344 0.5798 0.8880 0.9304
1.1404 0.85 1000 0.1376 0.7193 0.8875 0.9693 nan 0.9771 0.9856 0.5929 0.9157 0.9663 0.0 0.9348 0.9473 0.5812 0.9024 0.9503
1.673 1.02 1200 0.2288 0.7355 0.9290 0.9550 nan 0.9842 0.9694 0.7899 0.9746 0.9271 0.0 0.8997 0.9528 0.7220 0.9214 0.9168
0.1769 1.19 1400 0.3643 0.6840 0.8676 0.9132 nan 0.7880 0.9777 0.6237 0.9594 0.9894 0.0 0.7768 0.9581 0.5896 0.9289 0.8507
0.1443 1.35 1600 0.1294 0.7224 0.8898 0.9733 nan 0.9780 0.9908 0.5803 0.9283 0.9715 0.0 0.9439 0.9517 0.5662 0.9167 0.9561
0.0853 1.52 1800 0.1969 0.7185 0.8860 0.9633 nan 0.9255 0.9910 0.6207 0.8986 0.9940 0.0 0.9179 0.9438 0.6166 0.8922 0.9406
0.016 1.69 2000 0.3721 0.7342 0.9092 0.9627 nan 0.9242 0.9666 0.6944 0.9695 0.9913 0.0 0.9133 0.9517 0.6838 0.9205 0.9358
0.0799 1.86 2200 0.0765 0.7476 0.9155 0.9811 nan 0.9781 0.9821 0.6674 0.9639 0.9858 0.0 0.9603 0.9622 0.6607 0.9322 0.9704
0.0484 2.03 2400 0.1077 0.7449 0.9166 0.9738 nan 0.9741 0.9799 0.6936 0.9614 0.9742 0.0 0.9419 0.9639 0.6774 0.9307 0.9554
5.8301 2.2 2600 0.1588 0.7200 0.8966 0.9671 nan 0.9642 0.9474 0.6158 0.9824 0.9729 0.0 0.9315 0.9399 0.5986 0.9022 0.9475
0.0051 2.37 2800 0.1625 0.7429 0.9194 0.9670 nan 0.9399 0.9698 0.7236 0.9770 0.9866 0.0 0.9234 0.9592 0.7050 0.9262 0.9435
0.0722 2.54 3000 0.1039 0.7401 0.9078 0.9776 nan 0.9917 0.9771 0.6332 0.9683 0.9686 0.0 0.9523 0.9615 0.6296 0.9340 0.9631
0.0318 2.71 3200 0.1010 0.7583 0.9326 0.9759 nan 0.9688 0.9798 0.7620 0.9713 0.9813 0.0 0.9455 0.9643 0.7433 0.9373 0.9591
0.0154 2.88 3400 0.1191 0.7517 0.9274 0.9760 nan 0.9701 0.9693 0.7312 0.9848 0.9817 0.0 0.9472 0.9606 0.7123 0.9303 0.9600
0.0788 3.05 3600 0.0925 0.7553 0.9391 0.9790 nan 0.9736 0.9493 0.7925 0.9908 0.9893 0.0 0.9593 0.9448 0.7528 0.9053 0.9699
0.1632 3.22 3800 0.0994 0.7485 0.9171 0.9775 nan 0.9869 0.9819 0.6819 0.9633 0.9714 0.0 0.9505 0.9641 0.6774 0.9369 0.9620
0.8963 3.39 4000 0.1258 0.7515 0.9287 0.9673 nan 0.9711 0.9781 0.7623 0.9701 0.9619 0.0 0.9251 0.9634 0.7444 0.9348 0.9414
0.0082 3.56 4200 0.1316 0.7540 0.9392 0.9745 nan 0.9841 0.9621 0.7948 0.9860 0.9690 0.0 0.9456 0.9554 0.7435 0.9216 0.9576
0.2648 3.73 4400 0.0968 0.7631 0.9364 0.9799 nan 0.9708 0.9812 0.7741 0.9678 0.9884 0.0 0.9559 0.9665 0.7498 0.9393 0.9670
0.0396 3.9 4600 0.0703 0.7658 0.9362 0.9836 nan 0.9737 0.9848 0.7721 0.9561 0.9946 0.0 0.9662 0.9649 0.7538 0.9349 0.9751
0.0571 4.06 4800 0.0970 0.7613 0.9357 0.9798 nan 0.9869 0.9827 0.7649 0.9686 0.9753 0.0 0.9562 0.9663 0.7391 0.9404 0.9660
0.0316 4.23 5000 0.1017 0.7450 0.9128 0.9769 nan 0.9582 0.9756 0.6625 0.9749 0.9926 0.0 0.9483 0.9631 0.6561 0.9403 0.9619
0.0789 4.4 5200 0.0719 0.7679 0.9416 0.9831 nan 0.9765 0.9775 0.7851 0.9781 0.9906 0.0 0.9643 0.9665 0.7637 0.9394 0.9735
0.0689 4.57 5400 0.0739 0.7601 0.9289 0.9823 nan 0.9864 0.9851 0.7320 0.9592 0.9817 0.0 0.9629 0.9659 0.7206 0.9396 0.9719
0.0886 4.74 5600 0.1535 0.7577 0.9277 0.9778 nan 0.9587 0.9858 0.7367 0.9647 0.9926 0.0 0.9495 0.9669 0.7257 0.9414 0.9627
0.0887 4.91 5800 0.0821 0.7646 0.9358 0.9814 nan 0.9916 0.9876 0.7630 0.9619 0.9748 0.0 0.9598 0.9682 0.7479 0.9424 0.9690
0.0015 5.08 6000 0.0604 0.7617 0.9297 0.9843 nan 0.9857 0.9832 0.7222 0.9720 0.9854 0.0 0.9667 0.9683 0.7154 0.9449 0.9751
0.1276 5.25 6200 0.0907 0.7591 0.9300 0.9791 nan 0.9732 0.9824 0.7404 0.9697 0.9844 0.0 0.9535 0.9672 0.7270 0.9418 0.9651
0.0356 5.42 6400 0.1027 0.7541 0.9275 0.9749 nan 0.9938 0.9810 0.7298 0.9736 0.9594 0.0 0.9438 0.9671 0.7152 0.9432 0.9554
0.0359 5.59 6600 0.1316 0.7561 0.9244 0.9790 nan 0.9625 0.9860 0.7161 0.9654 0.9921 0.0 0.9524 0.9682 0.7078 0.9436 0.9648
0.0085 5.76 6800 0.0660 0.7715 0.9442 0.9859 nan 0.9834 0.9788 0.7914 0.9762 0.9910 0.0 0.9717 0.9679 0.7676 0.9427 0.9789
0.0351 5.93 7000 0.0609 0.7633 0.9317 0.9843 nan 0.9797 0.9758 0.7367 0.9748 0.9916 0.0 0.9689 0.9639 0.7286 0.9417 0.9768
0.0185 6.1 7200 0.0520 0.7718 0.9442 0.9857 nan 0.9923 0.9833 0.7905 0.9720 0.9831 0.0 0.9707 0.9690 0.7687 0.9445 0.9777
0.51 6.27 7400 0.0642 0.7717 0.9435 0.9846 nan 0.9746 0.9826 0.7921 0.9741 0.9943 0.0 0.9671 0.9692 0.7729 0.9451 0.9757
0.0246 6.44 7600 0.0608 0.7683 0.9389 0.9849 nan 0.9879 0.9831 0.7658 0.9727 0.9848 0.0 0.9686 0.9688 0.7516 0.9445 0.9762
0.1015 6.6 7800 0.0408 0.7716 0.9408 0.9882 nan 0.9901 0.9859 0.7704 0.9679 0.9900 0.0 0.9771 0.9699 0.7545 0.9452 0.9829
0.0598 6.77 8000 0.0454 0.7639 0.9319 0.9876 nan 0.9871 0.9823 0.7271 0.9713 0.9917 0.0 0.9764 0.9688 0.7117 0.9441 0.9824
0.002 6.94 8200 0.0543 0.7702 0.9398 0.9864 nan 0.9819 0.9883 0.7810 0.9544 0.9936 0.0 0.9735 0.9657 0.7636 0.9382 0.9804
0.0021 7.11 8400 0.0827 0.7736 0.9449 0.9873 nan 0.9819 0.9831 0.7916 0.9735 0.9944 0.0 0.9745 0.9697 0.7698 0.9463 0.9812
0.0008 7.28 8600 0.0530 0.7691 0.9391 0.9865 nan 0.9843 0.9808 0.7629 0.9764 0.9912 0.0 0.9728 0.9687 0.7487 0.9447 0.9798
0.0113 7.45 8800 0.0486 0.7696 0.9382 0.9876 nan 0.9889 0.9849 0.7578 0.9694 0.9898 0.0 0.9756 0.9689 0.7464 0.9451 0.9819
0.0014 7.62 9000 0.0553 0.7743 0.9476 0.9863 nan 0.9841 0.9825 0.8066 0.9740 0.9908 0.0 0.9720 0.9696 0.7788 0.9464 0.9792
0.0474 7.79 9200 0.0442 0.7704 0.9393 0.9872 nan 0.9890 0.9862 0.7668 0.9654 0.9891 0.0 0.9747 0.9686 0.7541 0.9439 0.9811
0.0278 7.96 9400 0.0534 0.7698 0.9392 0.9862 nan 0.9845 0.9860 0.7693 0.9660 0.9902 0.0 0.9719 0.9690 0.7544 0.9446 0.9790

Framework versions