generated_from_trainer

<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. -->

perioli_manifesti_v8.4

This model is a fine-tuned version of microsoft/layoutlmv3-base on the sroie dataset. It achieves the following results on the evaluation set:

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
No log 0.33 100 0.1293 0.7382 0.7649 0.7513 0.9604
No log 0.65 200 0.0680 0.8235 0.8845 0.8529 0.9783
No log 0.98 300 0.0408 0.8919 0.9297 0.9104 0.9881
No log 1.31 400 0.0335 0.9051 0.9500 0.9270 0.9905
0.1635 1.63 500 0.0372 0.8970 0.9431 0.9195 0.9895
0.1635 1.96 600 0.0251 0.9333 0.9600 0.9465 0.9932
0.1635 2.29 700 0.0284 0.9277 0.9552 0.9412 0.9923
0.1635 2.61 800 0.0237 0.9317 0.9645 0.9478 0.9935
0.1635 2.94 900 0.0210 0.9398 0.9624 0.9510 0.9939
0.0277 3.27 1000 0.0200 0.9503 0.9683 0.9592 0.9949
0.0277 3.59 1100 0.0201 0.9470 0.9676 0.9572 0.9950
0.0277 3.92 1200 0.0197 0.9567 0.9669 0.9618 0.9954
0.0277 4.25 1300 0.0209 0.9472 0.9717 0.9593 0.9952
0.0277 4.58 1400 0.0212 0.9561 0.9748 0.9654 0.9956
0.0153 4.9 1500 0.0227 0.9469 0.9710 0.9588 0.9949
0.0153 5.23 1600 0.0238 0.9434 0.9717 0.9574 0.9950
0.0153 5.56 1700 0.0228 0.9476 0.9721 0.9597 0.9951
0.0153 5.88 1800 0.0206 0.9541 0.9738 0.9638 0.9956
0.0153 6.21 1900 0.0192 0.9579 0.9714 0.9646 0.9956
0.0109 6.54 2000 0.0198 0.9593 0.9745 0.9668 0.9960
0.0109 6.86 2100 0.0207 0.9557 0.9731 0.9643 0.9957
0.0109 7.19 2200 0.0215 0.9614 0.9700 0.9657 0.9959
0.0109 7.52 2300 0.0226 0.9528 0.9752 0.9639 0.9959
0.0109 7.84 2400 0.0218 0.9563 0.9738 0.9650 0.9959
0.0077 8.17 2500 0.0209 0.9587 0.9766 0.9676 0.9963
0.0077 8.5 2600 0.0236 0.9469 0.9710 0.9588 0.9951
0.0077 8.82 2700 0.0194 0.9570 0.9748 0.9658 0.9960
0.0077 9.15 2800 0.0196 0.9528 0.9745 0.9635 0.9958
0.0077 9.48 2900 0.0199 0.9590 0.9748 0.9668 0.9961
0.0057 9.8 3000 0.0188 0.9613 0.9766 0.9689 0.9963
0.0057 10.13 3100 0.0201 0.9551 0.9759 0.9654 0.9959
0.0057 10.46 3200 0.0202 0.9544 0.9731 0.9636 0.9957
0.0057 10.78 3300 0.0202 0.9555 0.9759 0.9656 0.9959
0.0057 11.11 3400 0.0173 0.9610 0.9766 0.9687 0.9963
0.0045 11.44 3500 0.0191 0.9558 0.9755 0.9655 0.9960
0.0045 11.76 3600 0.0188 0.9557 0.9752 0.9654 0.9959
0.0045 12.09 3700 0.0187 0.9567 0.9755 0.9660 0.9960
0.0045 12.42 3800 0.0190 0.9558 0.9755 0.9655 0.9960
0.0045 12.75 3900 0.0192 0.9577 0.9762 0.9669 0.9961
0.004 13.07 4000 0.0189 0.9607 0.9772 0.9689 0.9963

Framework versions