<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. -->
bert-finetuned-ner
This model is a fine-tuned version of bert-base-cased on the conll2003 dataset. It achieves the following results on the evaluation set:
- Loss: 0.0606
- Precision: 0.9341
- Recall: 0.9500
- F1: 0.9420
- Accuracy: 0.9867
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
0.0801 | 1.0 | 1756 | 0.0727 | 0.9047 | 0.9325 | 0.9184 | 0.9814 |
0.0403 | 2.0 | 3512 | 0.0574 | 0.9293 | 0.9483 | 0.9387 | 0.9860 |
0.0245 | 3.0 | 5268 | 0.0606 | 0.9341 | 0.9500 | 0.9420 | 0.9867 |
Framework versions
- Transformers 4.31.0
- Pytorch 2.0.1+cu117
- Datasets 2.14.4
- Tokenizers 0.13.3