<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. -->
perioli_manifesti_v8.6
This model is a fine-tuned version of microsoft/layoutlmv3-base on the sroie dataset. It achieves the following results on the evaluation set:
- Loss: 0.0216
- Precision: 0.9581
- Recall: 0.9762
- F1: 0.9670
- Accuracy: 0.9961
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- training_steps: 4000
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
No log | 0.4 | 100 | 0.1273 | 0.7791 | 0.7842 | 0.7817 | 0.9675 |
No log | 0.81 | 200 | 0.0645 | 0.8571 | 0.9121 | 0.8838 | 0.9842 |
No log | 1.21 | 300 | 0.0435 | 0.8851 | 0.9290 | 0.9065 | 0.9876 |
No log | 1.61 | 400 | 0.0301 | 0.9138 | 0.9500 | 0.9316 | 0.9912 |
0.1489 | 2.02 | 500 | 0.0266 | 0.9264 | 0.9542 | 0.9401 | 0.9923 |
0.1489 | 2.42 | 600 | 0.0326 | 0.8981 | 0.9511 | 0.9238 | 0.9905 |
0.1489 | 2.82 | 700 | 0.0239 | 0.9237 | 0.9555 | 0.9393 | 0.9925 |
0.1489 | 3.23 | 800 | 0.0225 | 0.9417 | 0.9628 | 0.9521 | 0.9939 |
0.1489 | 3.63 | 900 | 0.0230 | 0.9464 | 0.9673 | 0.9567 | 0.9946 |
0.0259 | 4.03 | 1000 | 0.0178 | 0.9554 | 0.9683 | 0.9618 | 0.9954 |
0.0259 | 4.44 | 1100 | 0.0232 | 0.9498 | 0.9662 | 0.9580 | 0.9948 |
0.0259 | 4.84 | 1200 | 0.0221 | 0.9510 | 0.9710 | 0.9609 | 0.9951 |
0.0259 | 5.24 | 1300 | 0.0207 | 0.9477 | 0.9690 | 0.9582 | 0.9950 |
0.0259 | 5.65 | 1400 | 0.0186 | 0.9555 | 0.9693 | 0.9624 | 0.9954 |
0.0143 | 6.05 | 1500 | 0.0176 | 0.9580 | 0.9676 | 0.9628 | 0.9956 |
0.0143 | 6.45 | 1600 | 0.0204 | 0.9570 | 0.9673 | 0.9621 | 0.9954 |
0.0143 | 6.85 | 1700 | 0.0204 | 0.9451 | 0.9728 | 0.9587 | 0.9951 |
0.0143 | 7.26 | 1800 | 0.0184 | 0.9566 | 0.9724 | 0.9644 | 0.9957 |
0.0143 | 7.66 | 1900 | 0.0193 | 0.9541 | 0.9752 | 0.9645 | 0.9957 |
0.0093 | 8.06 | 2000 | 0.0210 | 0.9485 | 0.9721 | 0.9602 | 0.9953 |
0.0093 | 8.47 | 2100 | 0.0197 | 0.9553 | 0.9728 | 0.9640 | 0.9957 |
0.0093 | 8.87 | 2200 | 0.0196 | 0.9560 | 0.9731 | 0.9645 | 0.9958 |
0.0093 | 9.27 | 2300 | 0.0198 | 0.9566 | 0.9735 | 0.9650 | 0.9958 |
0.0093 | 9.68 | 2400 | 0.0226 | 0.9465 | 0.9697 | 0.9579 | 0.9950 |
0.006 | 10.08 | 2500 | 0.0207 | 0.9541 | 0.9735 | 0.9637 | 0.9956 |
0.006 | 10.48 | 2600 | 0.0218 | 0.9531 | 0.9735 | 0.9632 | 0.9955 |
0.006 | 10.89 | 2700 | 0.0210 | 0.9602 | 0.9724 | 0.9663 | 0.9960 |
0.006 | 11.29 | 2800 | 0.0209 | 0.9590 | 0.9745 | 0.9667 | 0.9961 |
0.006 | 11.69 | 2900 | 0.0195 | 0.9572 | 0.9721 | 0.9646 | 0.9958 |
0.0045 | 12.1 | 3000 | 0.0214 | 0.9547 | 0.9731 | 0.9638 | 0.9956 |
0.0045 | 12.5 | 3100 | 0.0210 | 0.9511 | 0.9717 | 0.9613 | 0.9953 |
0.0045 | 12.9 | 3200 | 0.0237 | 0.9538 | 0.9741 | 0.9638 | 0.9956 |
0.0045 | 13.31 | 3300 | 0.0221 | 0.9583 | 0.9755 | 0.9669 | 0.9961 |
0.0045 | 13.71 | 3400 | 0.0207 | 0.9586 | 0.9731 | 0.9658 | 0.9959 |
0.0033 | 14.11 | 3500 | 0.0217 | 0.9562 | 0.9772 | 0.9666 | 0.9961 |
0.0033 | 14.52 | 3600 | 0.0207 | 0.9583 | 0.9748 | 0.9665 | 0.9961 |
0.0033 | 14.92 | 3700 | 0.0218 | 0.9590 | 0.9766 | 0.9677 | 0.9961 |
0.0033 | 15.32 | 3800 | 0.0213 | 0.9570 | 0.9735 | 0.9651 | 0.9959 |
0.0033 | 15.73 | 3900 | 0.0217 | 0.9577 | 0.9755 | 0.9665 | 0.9960 |
0.0027 | 16.13 | 4000 | 0.0216 | 0.9581 | 0.9762 | 0.9670 | 0.9961 |
Framework versions
- Transformers 4.28.0
- Pytorch 2.0.1+cu118
- Datasets 2.2.2
- Tokenizers 0.13.3