<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. -->
EElayoutlmv3_jordyvl_rvl_cdip_100_examples_per_class_2023-08-24_txt_vis_concat_enc_1_2_3_4_ramp
This model is a fine-tuned version of microsoft/layoutlmv3-base on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 1.5649
- Accuracy: 0.7425
- Exit 0 Accuracy: 0.05
- Exit 1 Accuracy: 0.415
- Exit 2 Accuracy: 0.505
- Exit 3 Accuracy: 0.6
- Exit 4 Accuracy: 0.6425
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 2
- eval_batch_size: 1
- seed: 42
- gradient_accumulation_steps: 24
- total_train_batch_size: 48
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 60
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | Exit 0 Accuracy | Exit 1 Accuracy | Exit 2 Accuracy | Exit 3 Accuracy | Exit 4 Accuracy |
---|---|---|---|---|---|---|---|---|---|
No log | 0.96 | 16 | 2.6888 | 0.15 | 0.08 | 0.0625 | 0.0625 | 0.0625 | 0.0625 |
No log | 1.98 | 33 | 2.5275 | 0.225 | 0.08 | 0.105 | 0.0625 | 0.0625 | 0.0625 |
No log | 3.0 | 50 | 2.3637 | 0.3025 | 0.0775 | 0.11 | 0.0625 | 0.0625 | 0.0625 |
No log | 3.96 | 66 | 2.1405 | 0.38 | 0.075 | 0.1275 | 0.0625 | 0.0625 | 0.0625 |
No log | 4.98 | 83 | 1.8868 | 0.4975 | 0.075 | 0.11 | 0.0625 | 0.0625 | 0.0625 |
No log | 6.0 | 100 | 1.6298 | 0.59 | 0.075 | 0.12 | 0.0625 | 0.0625 | 0.0625 |
No log | 6.96 | 116 | 1.4167 | 0.64 | 0.0725 | 0.1225 | 0.0625 | 0.0625 | 0.0625 |
No log | 7.98 | 133 | 1.2772 | 0.67 | 0.075 | 0.1225 | 0.0625 | 0.0625 | 0.0625 |
No log | 9.0 | 150 | 1.1184 | 0.7325 | 0.075 | 0.125 | 0.0625 | 0.0625 | 0.0625 |
No log | 9.96 | 166 | 1.0215 | 0.7275 | 0.07 | 0.1225 | 0.0625 | 0.0625 | 0.07 |
No log | 10.98 | 183 | 0.9752 | 0.7525 | 0.07 | 0.12 | 0.0625 | 0.0625 | 0.07 |
No log | 12.0 | 200 | 0.9165 | 0.7425 | 0.07 | 0.13 | 0.0625 | 0.0625 | 0.0775 |
No log | 12.96 | 216 | 0.9352 | 0.7475 | 0.0725 | 0.1325 | 0.0625 | 0.0625 | 0.0775 |
No log | 13.98 | 233 | 0.9210 | 0.745 | 0.0725 | 0.13 | 0.0625 | 0.0625 | 0.0775 |
No log | 15.0 | 250 | 0.8671 | 0.775 | 0.075 | 0.1275 | 0.0625 | 0.0625 | 0.09 |
No log | 15.96 | 266 | 0.9380 | 0.7625 | 0.0725 | 0.1275 | 0.0625 | 0.0625 | 0.095 |
No log | 16.98 | 283 | 0.9594 | 0.77 | 0.0725 | 0.1225 | 0.0625 | 0.0625 | 0.1025 |
No log | 18.0 | 300 | 1.0292 | 0.745 | 0.0725 | 0.1275 | 0.0625 | 0.0625 | 0.1025 |
No log | 18.96 | 316 | 0.9903 | 0.755 | 0.07 | 0.13 | 0.08 | 0.0625 | 0.1075 |
No log | 19.98 | 333 | 1.0235 | 0.7725 | 0.065 | 0.1275 | 0.08 | 0.065 | 0.1175 |
No log | 21.0 | 350 | 1.0540 | 0.7675 | 0.0675 | 0.1175 | 0.09 | 0.0825 | 0.1275 |
No log | 21.96 | 366 | 1.1432 | 0.745 | 0.075 | 0.1375 | 0.0875 | 0.1175 | 0.1825 |
No log | 22.98 | 383 | 1.1439 | 0.75 | 0.0725 | 0.1575 | 0.0775 | 0.17 | 0.2475 |
No log | 24.0 | 400 | 1.2294 | 0.7325 | 0.07 | 0.21 | 0.12 | 0.1975 | 0.26 |
No log | 24.96 | 416 | 1.2759 | 0.73 | 0.07 | 0.1425 | 0.1325 | 0.1925 | 0.2725 |
No log | 25.98 | 433 | 1.1571 | 0.765 | 0.06 | 0.17 | 0.155 | 0.2475 | 0.3275 |
No log | 27.0 | 450 | 1.2853 | 0.7475 | 0.0575 | 0.205 | 0.185 | 0.275 | 0.3825 |
No log | 27.96 | 466 | 1.3344 | 0.7325 | 0.0475 | 0.2525 | 0.2575 | 0.3275 | 0.3875 |
No log | 28.98 | 483 | 1.2372 | 0.7475 | 0.06 | 0.2075 | 0.2325 | 0.32 | 0.4425 |
1.7096 | 30.0 | 500 | 1.2672 | 0.7625 | 0.0525 | 0.2775 | 0.34 | 0.3825 | 0.4775 |
1.7096 | 30.96 | 516 | 1.3086 | 0.7525 | 0.0525 | 0.3225 | 0.375 | 0.4425 | 0.51 |
1.7096 | 31.98 | 533 | 1.3129 | 0.7525 | 0.0525 | 0.29 | 0.3825 | 0.4175 | 0.525 |
1.7096 | 33.0 | 550 | 1.3782 | 0.735 | 0.0475 | 0.305 | 0.4075 | 0.4625 | 0.525 |
1.7096 | 33.96 | 566 | 1.3449 | 0.735 | 0.0475 | 0.33 | 0.425 | 0.48 | 0.5425 |
1.7096 | 34.98 | 583 | 1.4527 | 0.7325 | 0.045 | 0.34 | 0.435 | 0.4925 | 0.5475 |
1.7096 | 36.0 | 600 | 1.4438 | 0.7275 | 0.05 | 0.3525 | 0.43 | 0.52 | 0.5425 |
1.7096 | 36.96 | 616 | 1.5117 | 0.7275 | 0.045 | 0.3775 | 0.445 | 0.53 | 0.56 |
1.7096 | 37.98 | 633 | 1.4637 | 0.735 | 0.0475 | 0.3925 | 0.445 | 0.5425 | 0.5675 |
1.7096 | 39.0 | 650 | 1.5315 | 0.73 | 0.045 | 0.3875 | 0.4575 | 0.55 | 0.6 |
1.7096 | 39.96 | 666 | 1.4396 | 0.74 | 0.05 | 0.39 | 0.4625 | 0.555 | 0.5975 |
1.7096 | 40.98 | 683 | 1.4850 | 0.7425 | 0.05 | 0.39 | 0.455 | 0.5475 | 0.6025 |
1.7096 | 42.0 | 700 | 1.4815 | 0.7525 | 0.05 | 0.3975 | 0.4625 | 0.5675 | 0.6 |
1.7096 | 42.96 | 716 | 1.4511 | 0.7475 | 0.05 | 0.3975 | 0.4725 | 0.56 | 0.6175 |
1.7096 | 43.98 | 733 | 1.5443 | 0.7275 | 0.05 | 0.3975 | 0.47 | 0.56 | 0.625 |
1.7096 | 45.0 | 750 | 1.5364 | 0.725 | 0.05 | 0.3975 | 0.4825 | 0.5675 | 0.625 |
1.7096 | 45.96 | 766 | 1.5455 | 0.7325 | 0.05 | 0.4 | 0.49 | 0.5675 | 0.625 |
1.7096 | 46.98 | 783 | 1.4992 | 0.745 | 0.05 | 0.4 | 0.4875 | 0.58 | 0.62 |
1.7096 | 48.0 | 800 | 1.5089 | 0.7375 | 0.05 | 0.4025 | 0.485 | 0.5825 | 0.6325 |
1.7096 | 48.96 | 816 | 1.5149 | 0.7375 | 0.05 | 0.4025 | 0.4925 | 0.5875 | 0.63 |
1.7096 | 49.98 | 833 | 1.5285 | 0.735 | 0.05 | 0.4025 | 0.5025 | 0.59 | 0.635 |
1.7096 | 51.0 | 850 | 1.5455 | 0.73 | 0.05 | 0.4 | 0.4975 | 0.595 | 0.64 |
1.7096 | 51.96 | 866 | 1.5598 | 0.7425 | 0.05 | 0.42 | 0.5 | 0.5975 | 0.64 |
1.7096 | 52.98 | 883 | 1.5727 | 0.7325 | 0.05 | 0.4125 | 0.5 | 0.5925 | 0.64 |
1.7096 | 54.0 | 900 | 1.5694 | 0.7425 | 0.05 | 0.415 | 0.495 | 0.5975 | 0.64 |
1.7096 | 54.96 | 916 | 1.5760 | 0.735 | 0.05 | 0.415 | 0.5025 | 0.5975 | 0.64 |
1.7096 | 55.98 | 933 | 1.5687 | 0.74 | 0.05 | 0.4125 | 0.5025 | 0.5975 | 0.6425 |
1.7096 | 57.0 | 950 | 1.5648 | 0.74 | 0.05 | 0.415 | 0.5025 | 0.6 | 0.6425 |
1.7096 | 57.6 | 960 | 1.5649 | 0.7425 | 0.05 | 0.415 | 0.505 | 0.6 | 0.6425 |
Framework versions
- Transformers 4.31.0
- Pytorch 2.0.1+cu117
- Datasets 2.13.1
- Tokenizers 0.13.3