generated_from_trainer

<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. -->

20230825003351

This model is a fine-tuned version of bert-large-cased on the super_glue dataset. It achieves the following results on the evaluation set:

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 1.0 156 0.6981 0.5307
No log 2.0 312 1.0094 0.4729
No log 3.0 468 0.9523 0.4729
0.9081 4.0 624 0.6610 0.5487
0.9081 5.0 780 0.8823 0.5415
0.9081 6.0 936 0.6125 0.6318
0.8417 7.0 1092 1.1255 0.6282
0.8417 8.0 1248 1.1191 0.5487
0.8417 9.0 1404 0.7418 0.6318
0.7229 10.0 1560 0.6357 0.6859
0.7229 11.0 1716 0.6525 0.6354
0.7229 12.0 1872 0.9733 0.6426
0.6627 13.0 2028 0.7120 0.6715
0.6627 14.0 2184 1.0585 0.6606
0.6627 15.0 2340 0.6682 0.6751
0.6627 16.0 2496 1.0978 0.6462
0.6611 17.0 2652 0.5480 0.7256
0.6611 18.0 2808 0.5491 0.7220
0.6611 19.0 2964 0.5740 0.7112
0.5716 20.0 3120 0.7281 0.6751
0.5716 21.0 3276 0.6144 0.6931
0.5716 22.0 3432 0.5663 0.7076
0.53 23.0 3588 0.6161 0.7329
0.53 24.0 3744 0.7898 0.6968
0.53 25.0 3900 0.9875 0.6715
0.5203 26.0 4056 0.5164 0.7329
0.5203 27.0 4212 0.5534 0.7473
0.5203 28.0 4368 0.6047 0.7473
0.4624 29.0 4524 0.6346 0.7292
0.4624 30.0 4680 0.8954 0.7040
0.4624 31.0 4836 0.6913 0.7004
0.4624 32.0 4992 0.6815 0.7401
0.4178 33.0 5148 0.6964 0.7220
0.4178 34.0 5304 0.6707 0.7184
0.4178 35.0 5460 0.6211 0.7581
0.4111 36.0 5616 0.7246 0.7329
0.4111 37.0 5772 0.8112 0.7401
0.4111 38.0 5928 0.8703 0.7220
0.3451 39.0 6084 0.6927 0.7220
0.3451 40.0 6240 0.8796 0.7292
0.3451 41.0 6396 0.7368 0.7329
0.3129 42.0 6552 0.7534 0.7365
0.3129 43.0 6708 0.8497 0.7040
0.3129 44.0 6864 0.6551 0.7581
0.3028 45.0 7020 0.9768 0.7076
0.3028 46.0 7176 0.7248 0.7509
0.3028 47.0 7332 0.7248 0.7473
0.3028 48.0 7488 0.8685 0.7581
0.2749 49.0 7644 0.7781 0.7437
0.2749 50.0 7800 0.8690 0.7365
0.2749 51.0 7956 1.0267 0.7473
0.2695 52.0 8112 0.7892 0.7437
0.2695 53.0 8268 0.8535 0.7256
0.2695 54.0 8424 0.7670 0.7473
0.2482 55.0 8580 0.7970 0.7509
0.2482 56.0 8736 0.9177 0.7473
0.2482 57.0 8892 0.9749 0.7437
0.2201 58.0 9048 0.7507 0.7256
0.2201 59.0 9204 0.9523 0.7401
0.2201 60.0 9360 0.7579 0.7545
0.2158 61.0 9516 1.0789 0.7437
0.2158 62.0 9672 0.9747 0.7437
0.2158 63.0 9828 1.1461 0.7220
0.2158 64.0 9984 0.8201 0.7509
0.2003 65.0 10140 0.9460 0.7365
0.2003 66.0 10296 0.9926 0.7617
0.2003 67.0 10452 1.0429 0.7329
0.1944 68.0 10608 0.9319 0.7401
0.1944 69.0 10764 0.8939 0.7545
0.1944 70.0 10920 0.9424 0.7473
0.179 71.0 11076 0.8541 0.7545
0.179 72.0 11232 0.9214 0.7581
0.179 73.0 11388 0.9028 0.7473
0.1751 74.0 11544 0.9283 0.7509
0.1751 75.0 11700 0.8972 0.7473
0.1751 76.0 11856 0.8062 0.7581
0.1661 77.0 12012 0.8653 0.7473
0.1661 78.0 12168 0.8238 0.7653
0.1661 79.0 12324 0.8519 0.7473
0.1661 80.0 12480 0.8357 0.7545

Framework versions