<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. -->
20230825045636
This model is a fine-tuned version of bert-large-cased on the super_glue dataset. It achieves the following results on the evaluation set:
- Loss: 0.4379
- Accuracy: 0.7690
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.005
- train_batch_size: 16
- eval_batch_size: 8
- seed: 11
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 80.0
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
No log | 1.0 | 156 | 1.3576 | 0.5307 |
No log | 2.0 | 312 | 0.9952 | 0.4693 |
No log | 3.0 | 468 | 1.0581 | 0.4765 |
0.907 | 4.0 | 624 | 0.8017 | 0.5343 |
0.907 | 5.0 | 780 | 0.6566 | 0.5451 |
0.907 | 6.0 | 936 | 0.5420 | 0.6245 |
0.8287 | 7.0 | 1092 | 0.5092 | 0.6173 |
0.8287 | 8.0 | 1248 | 0.4948 | 0.6462 |
0.8287 | 9.0 | 1404 | 0.4754 | 0.6895 |
0.7327 | 10.0 | 1560 | 0.7416 | 0.6173 |
0.7327 | 11.0 | 1716 | 1.1722 | 0.4621 |
0.7327 | 12.0 | 1872 | 0.5543 | 0.6895 |
0.7276 | 13.0 | 2028 | 0.4895 | 0.6931 |
0.7276 | 14.0 | 2184 | 0.4304 | 0.7148 |
0.7276 | 15.0 | 2340 | 0.4261 | 0.7401 |
0.7276 | 16.0 | 2496 | 0.4467 | 0.6859 |
0.6207 | 17.0 | 2652 | 0.4700 | 0.7184 |
0.6207 | 18.0 | 2808 | 0.6254 | 0.6751 |
0.6207 | 19.0 | 2964 | 0.5108 | 0.7292 |
0.5699 | 20.0 | 3120 | 0.7519 | 0.6354 |
0.5699 | 21.0 | 3276 | 0.4584 | 0.7184 |
0.5699 | 22.0 | 3432 | 0.8289 | 0.6318 |
0.5829 | 23.0 | 3588 | 0.4071 | 0.7148 |
0.5829 | 24.0 | 3744 | 0.4575 | 0.7365 |
0.5829 | 25.0 | 3900 | 0.5062 | 0.6895 |
0.4913 | 26.0 | 4056 | 0.5308 | 0.7220 |
0.4913 | 27.0 | 4212 | 0.4907 | 0.7473 |
0.4913 | 28.0 | 4368 | 0.4703 | 0.7365 |
0.4679 | 29.0 | 4524 | 0.4244 | 0.7148 |
0.4679 | 30.0 | 4680 | 0.4450 | 0.7365 |
0.4679 | 31.0 | 4836 | 0.6184 | 0.6968 |
0.4679 | 32.0 | 4992 | 0.4378 | 0.7437 |
0.4377 | 33.0 | 5148 | 0.4118 | 0.7437 |
0.4377 | 34.0 | 5304 | 0.4272 | 0.7437 |
0.4377 | 35.0 | 5460 | 0.3998 | 0.7473 |
0.4076 | 36.0 | 5616 | 0.5180 | 0.7581 |
0.4076 | 37.0 | 5772 | 0.4967 | 0.7581 |
0.4076 | 38.0 | 5928 | 0.4595 | 0.7437 |
0.372 | 39.0 | 6084 | 0.5050 | 0.7329 |
0.372 | 40.0 | 6240 | 0.3900 | 0.7401 |
0.372 | 41.0 | 6396 | 0.4596 | 0.7545 |
0.3201 | 42.0 | 6552 | 0.4917 | 0.7690 |
0.3201 | 43.0 | 6708 | 0.4171 | 0.7870 |
0.3201 | 44.0 | 6864 | 0.4851 | 0.7256 |
0.3284 | 45.0 | 7020 | 0.4763 | 0.7401 |
0.3284 | 46.0 | 7176 | 0.4541 | 0.7581 |
0.3284 | 47.0 | 7332 | 0.4909 | 0.7509 |
0.3284 | 48.0 | 7488 | 0.5488 | 0.7329 |
0.2809 | 49.0 | 7644 | 0.5422 | 0.7473 |
0.2809 | 50.0 | 7800 | 0.4695 | 0.7653 |
0.2809 | 51.0 | 7956 | 0.5016 | 0.7581 |
0.275 | 52.0 | 8112 | 0.4627 | 0.7690 |
0.275 | 53.0 | 8268 | 0.4886 | 0.7401 |
0.275 | 54.0 | 8424 | 0.4425 | 0.7690 |
0.2456 | 55.0 | 8580 | 0.4289 | 0.7653 |
0.2456 | 56.0 | 8736 | 0.4891 | 0.7545 |
0.2456 | 57.0 | 8892 | 0.4477 | 0.7437 |
0.2328 | 58.0 | 9048 | 0.4510 | 0.7581 |
0.2328 | 59.0 | 9204 | 0.5283 | 0.7581 |
0.2328 | 60.0 | 9360 | 0.4405 | 0.7653 |
0.222 | 61.0 | 9516 | 0.5418 | 0.7509 |
0.222 | 62.0 | 9672 | 0.4933 | 0.7617 |
0.222 | 63.0 | 9828 | 0.4399 | 0.7653 |
0.222 | 64.0 | 9984 | 0.4490 | 0.7726 |
0.2174 | 65.0 | 10140 | 0.4820 | 0.7581 |
0.2174 | 66.0 | 10296 | 0.4732 | 0.7726 |
0.2174 | 67.0 | 10452 | 0.4712 | 0.7690 |
0.2075 | 68.0 | 10608 | 0.4847 | 0.7545 |
0.2075 | 69.0 | 10764 | 0.4704 | 0.7509 |
0.2075 | 70.0 | 10920 | 0.4855 | 0.7581 |
0.1987 | 71.0 | 11076 | 0.4845 | 0.7617 |
0.1987 | 72.0 | 11232 | 0.4724 | 0.7617 |
0.1987 | 73.0 | 11388 | 0.4272 | 0.7690 |
0.1845 | 74.0 | 11544 | 0.4324 | 0.7653 |
0.1845 | 75.0 | 11700 | 0.4343 | 0.7726 |
0.1845 | 76.0 | 11856 | 0.4407 | 0.7762 |
0.1835 | 77.0 | 12012 | 0.4185 | 0.7726 |
0.1835 | 78.0 | 12168 | 0.4363 | 0.7762 |
0.1835 | 79.0 | 12324 | 0.4328 | 0.7762 |
0.1835 | 80.0 | 12480 | 0.4379 | 0.7690 |
Framework versions
- Transformers 4.26.1
- Pytorch 2.0.1+cu118
- Datasets 2.12.0
- Tokenizers 0.13.3