<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. -->
20230825070638
This model is a fine-tuned version of bert-large-cased on the super_glue dataset. It achieves the following results on the evaluation set:
- Loss: 0.3456
- Accuracy: 0.7329
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.005
- train_batch_size: 16
- eval_batch_size: 8
- seed: 11
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 80.0
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
No log | 1.0 | 156 | 0.7894 | 0.5271 |
No log | 2.0 | 312 | 0.6658 | 0.5379 |
No log | 3.0 | 468 | 0.6408 | 0.5054 |
0.886 | 4.0 | 624 | 0.7134 | 0.4729 |
0.886 | 5.0 | 780 | 0.6234 | 0.5560 |
0.886 | 6.0 | 936 | 0.4782 | 0.6318 |
0.7765 | 7.0 | 1092 | 1.1394 | 0.5776 |
0.7765 | 8.0 | 1248 | 0.5214 | 0.6534 |
0.7765 | 9.0 | 1404 | 0.4206 | 0.6570 |
0.7206 | 10.0 | 1560 | 0.5019 | 0.6643 |
0.7206 | 11.0 | 1716 | 0.7680 | 0.5343 |
0.7206 | 12.0 | 1872 | 0.3433 | 0.7220 |
0.6543 | 13.0 | 2028 | 0.3834 | 0.7292 |
0.6543 | 14.0 | 2184 | 0.4588 | 0.6751 |
0.6543 | 15.0 | 2340 | 0.3413 | 0.7040 |
0.6543 | 16.0 | 2496 | 0.4874 | 0.6426 |
0.5973 | 17.0 | 2652 | 0.3283 | 0.7256 |
0.5973 | 18.0 | 2808 | 0.3605 | 0.7329 |
0.5973 | 19.0 | 2964 | 0.3314 | 0.7256 |
0.5433 | 20.0 | 3120 | 0.5998 | 0.6606 |
0.5433 | 21.0 | 3276 | 0.3489 | 0.6931 |
0.5433 | 22.0 | 3432 | 0.4316 | 0.6715 |
0.5373 | 23.0 | 3588 | 0.3328 | 0.7076 |
0.5373 | 24.0 | 3744 | 0.3379 | 0.7220 |
0.5373 | 25.0 | 3900 | 0.3580 | 0.7148 |
0.4923 | 26.0 | 4056 | 0.3141 | 0.7329 |
0.4923 | 27.0 | 4212 | 0.4341 | 0.7365 |
0.4923 | 28.0 | 4368 | 0.3386 | 0.7220 |
0.4513 | 29.0 | 4524 | 0.3038 | 0.7220 |
0.4513 | 30.0 | 4680 | 0.3775 | 0.7220 |
0.4513 | 31.0 | 4836 | 0.4197 | 0.7076 |
0.4513 | 32.0 | 4992 | 0.4666 | 0.7220 |
0.4041 | 33.0 | 5148 | 0.3355 | 0.7365 |
0.4041 | 34.0 | 5304 | 0.3147 | 0.7329 |
0.4041 | 35.0 | 5460 | 0.3810 | 0.7184 |
0.3705 | 36.0 | 5616 | 0.3184 | 0.7256 |
0.3705 | 37.0 | 5772 | 0.3668 | 0.7076 |
0.3705 | 38.0 | 5928 | 0.3859 | 0.7220 |
0.3556 | 39.0 | 6084 | 0.3010 | 0.7329 |
0.3556 | 40.0 | 6240 | 0.3201 | 0.7220 |
0.3556 | 41.0 | 6396 | 0.3304 | 0.7329 |
0.3089 | 42.0 | 6552 | 0.3634 | 0.7365 |
0.3089 | 43.0 | 6708 | 0.3844 | 0.7184 |
0.3089 | 44.0 | 6864 | 0.3320 | 0.7220 |
0.3015 | 45.0 | 7020 | 0.3696 | 0.7220 |
0.3015 | 46.0 | 7176 | 0.3665 | 0.7220 |
0.3015 | 47.0 | 7332 | 0.3355 | 0.7256 |
0.3015 | 48.0 | 7488 | 0.3568 | 0.7292 |
0.2709 | 49.0 | 7644 | 0.3450 | 0.7329 |
0.2709 | 50.0 | 7800 | 0.3790 | 0.7148 |
0.2709 | 51.0 | 7956 | 0.3516 | 0.7112 |
0.2681 | 52.0 | 8112 | 0.3741 | 0.7329 |
0.2681 | 53.0 | 8268 | 0.3615 | 0.7220 |
0.2681 | 54.0 | 8424 | 0.3479 | 0.7292 |
0.2477 | 55.0 | 8580 | 0.3401 | 0.7184 |
0.2477 | 56.0 | 8736 | 0.3766 | 0.7329 |
0.2477 | 57.0 | 8892 | 0.3562 | 0.7148 |
0.2344 | 58.0 | 9048 | 0.3412 | 0.7220 |
0.2344 | 59.0 | 9204 | 0.3782 | 0.7437 |
0.2344 | 60.0 | 9360 | 0.3723 | 0.7040 |
0.2126 | 61.0 | 9516 | 0.3852 | 0.7292 |
0.2126 | 62.0 | 9672 | 0.3901 | 0.7256 |
0.2126 | 63.0 | 9828 | 0.3698 | 0.7112 |
0.2126 | 64.0 | 9984 | 0.3249 | 0.7220 |
0.2127 | 65.0 | 10140 | 0.3979 | 0.7004 |
0.2127 | 66.0 | 10296 | 0.3705 | 0.7365 |
0.2127 | 67.0 | 10452 | 0.3317 | 0.7220 |
0.199 | 68.0 | 10608 | 0.3322 | 0.7329 |
0.199 | 69.0 | 10764 | 0.3706 | 0.7220 |
0.199 | 70.0 | 10920 | 0.3628 | 0.7148 |
0.1959 | 71.0 | 11076 | 0.3600 | 0.7437 |
0.1959 | 72.0 | 11232 | 0.3349 | 0.7437 |
0.1959 | 73.0 | 11388 | 0.3650 | 0.7184 |
0.184 | 74.0 | 11544 | 0.3337 | 0.7365 |
0.184 | 75.0 | 11700 | 0.3309 | 0.7329 |
0.184 | 76.0 | 11856 | 0.3237 | 0.7365 |
0.183 | 77.0 | 12012 | 0.3430 | 0.7256 |
0.183 | 78.0 | 12168 | 0.3567 | 0.7329 |
0.183 | 79.0 | 12324 | 0.3541 | 0.7329 |
0.183 | 80.0 | 12480 | 0.3456 | 0.7329 |
Framework versions
- Transformers 4.26.1
- Pytorch 2.0.1+cu118
- Datasets 2.12.0
- Tokenizers 0.13.3