<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. -->
20230825093306
This model is a fine-tuned version of bert-large-cased on the super_glue dataset. It achieves the following results on the evaluation set:
- Loss: 0.1749
- Accuracy: 0.7545
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.005
- train_batch_size: 16
- eval_batch_size: 8
- seed: 11
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 80.0
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
No log | 1.0 | 156 | 0.9098 | 0.5307 |
No log | 2.0 | 312 | 1.3904 | 0.4765 |
No log | 3.0 | 468 | 1.0371 | 0.4729 |
0.9793 | 4.0 | 624 | 0.6882 | 0.5090 |
0.9793 | 5.0 | 780 | 0.5519 | 0.5523 |
0.9793 | 6.0 | 936 | 0.6019 | 0.5560 |
0.8653 | 7.0 | 1092 | 0.6463 | 0.5596 |
0.8653 | 8.0 | 1248 | 0.4313 | 0.6245 |
0.8653 | 9.0 | 1404 | 0.3395 | 0.6787 |
0.7164 | 10.0 | 1560 | 0.6637 | 0.5921 |
0.7164 | 11.0 | 1716 | 0.2853 | 0.6859 |
0.7164 | 12.0 | 1872 | 0.3014 | 0.7112 |
0.6696 | 13.0 | 2028 | 0.3778 | 0.6895 |
0.6696 | 14.0 | 2184 | 0.2711 | 0.7184 |
0.6696 | 15.0 | 2340 | 0.2947 | 0.6643 |
0.6696 | 16.0 | 2496 | 0.4965 | 0.6282 |
0.5962 | 17.0 | 2652 | 0.3037 | 0.7184 |
0.5962 | 18.0 | 2808 | 0.4431 | 0.7184 |
0.5962 | 19.0 | 2964 | 0.2407 | 0.7184 |
0.5972 | 20.0 | 3120 | 0.2475 | 0.7148 |
0.5972 | 21.0 | 3276 | 0.2248 | 0.7329 |
0.5972 | 22.0 | 3432 | 0.3476 | 0.6643 |
0.567 | 23.0 | 3588 | 0.2318 | 0.7112 |
0.567 | 24.0 | 3744 | 0.3517 | 0.7292 |
0.567 | 25.0 | 3900 | 0.3102 | 0.6643 |
0.5253 | 26.0 | 4056 | 0.2331 | 0.7148 |
0.5253 | 27.0 | 4212 | 0.3600 | 0.7292 |
0.5253 | 28.0 | 4368 | 0.1932 | 0.7292 |
0.5076 | 29.0 | 4524 | 0.1979 | 0.7292 |
0.5076 | 30.0 | 4680 | 0.2349 | 0.7437 |
0.5076 | 31.0 | 4836 | 0.2877 | 0.6715 |
0.5076 | 32.0 | 4992 | 0.2023 | 0.7401 |
0.4592 | 33.0 | 5148 | 0.2016 | 0.7437 |
0.4592 | 34.0 | 5304 | 0.2073 | 0.7076 |
0.4592 | 35.0 | 5460 | 0.2725 | 0.7617 |
0.434 | 36.0 | 5616 | 0.3714 | 0.6534 |
0.434 | 37.0 | 5772 | 0.2117 | 0.7112 |
0.434 | 38.0 | 5928 | 0.2338 | 0.6968 |
0.4114 | 39.0 | 6084 | 0.2117 | 0.7148 |
0.4114 | 40.0 | 6240 | 0.2254 | 0.7148 |
0.4114 | 41.0 | 6396 | 0.1978 | 0.7509 |
0.3906 | 42.0 | 6552 | 0.1965 | 0.7401 |
0.3906 | 43.0 | 6708 | 0.1828 | 0.7329 |
0.3906 | 44.0 | 6864 | 0.1891 | 0.7473 |
0.3651 | 45.0 | 7020 | 0.1917 | 0.7509 |
0.3651 | 46.0 | 7176 | 0.1888 | 0.7329 |
0.3651 | 47.0 | 7332 | 0.2906 | 0.7690 |
0.3651 | 48.0 | 7488 | 0.1945 | 0.7365 |
0.3358 | 49.0 | 7644 | 0.2083 | 0.7401 |
0.3358 | 50.0 | 7800 | 0.1822 | 0.7437 |
0.3358 | 51.0 | 7956 | 0.1848 | 0.7437 |
0.324 | 52.0 | 8112 | 0.1706 | 0.7437 |
0.324 | 53.0 | 8268 | 0.2049 | 0.7365 |
0.324 | 54.0 | 8424 | 0.1933 | 0.7509 |
0.3105 | 55.0 | 8580 | 0.1782 | 0.7365 |
0.3105 | 56.0 | 8736 | 0.1809 | 0.7365 |
0.3105 | 57.0 | 8892 | 0.1788 | 0.7292 |
0.2976 | 58.0 | 9048 | 0.2209 | 0.7617 |
0.2976 | 59.0 | 9204 | 0.1784 | 0.7473 |
0.2976 | 60.0 | 9360 | 0.1750 | 0.7617 |
0.2867 | 61.0 | 9516 | 0.1884 | 0.7401 |
0.2867 | 62.0 | 9672 | 0.1805 | 0.7509 |
0.2867 | 63.0 | 9828 | 0.1828 | 0.7509 |
0.2867 | 64.0 | 9984 | 0.1863 | 0.7545 |
0.2852 | 65.0 | 10140 | 0.1818 | 0.7581 |
0.2852 | 66.0 | 10296 | 0.1778 | 0.7545 |
0.2852 | 67.0 | 10452 | 0.1908 | 0.7581 |
0.2663 | 68.0 | 10608 | 0.1799 | 0.7545 |
0.2663 | 69.0 | 10764 | 0.1808 | 0.7581 |
0.2663 | 70.0 | 10920 | 0.1797 | 0.7437 |
0.2681 | 71.0 | 11076 | 0.1835 | 0.7581 |
0.2681 | 72.0 | 11232 | 0.1812 | 0.7581 |
0.2681 | 73.0 | 11388 | 0.1799 | 0.7617 |
0.2564 | 74.0 | 11544 | 0.1874 | 0.7581 |
0.2564 | 75.0 | 11700 | 0.1766 | 0.7581 |
0.2564 | 76.0 | 11856 | 0.1782 | 0.7545 |
0.2633 | 77.0 | 12012 | 0.1772 | 0.7545 |
0.2633 | 78.0 | 12168 | 0.1743 | 0.7617 |
0.2633 | 79.0 | 12324 | 0.1749 | 0.7545 |
0.2633 | 80.0 | 12480 | 0.1749 | 0.7545 |
Framework versions
- Transformers 4.26.1
- Pytorch 2.0.1+cu118
- Datasets 2.12.0
- Tokenizers 0.13.3