<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. -->
20230825183854
This model is a fine-tuned version of bert-large-cased on the super_glue dataset. It achieves the following results on the evaluation set:
- Loss: 0.3677
- Accuracy: 0.7329
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.005
- train_batch_size: 16
- eval_batch_size: 8
- seed: 11
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 80.0
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
No log | 1.0 | 156 | 0.6538 | 0.5307 |
No log | 2.0 | 312 | 0.6933 | 0.5162 |
No log | 3.0 | 468 | 0.7141 | 0.4585 |
0.8733 | 4.0 | 624 | 0.6298 | 0.5343 |
0.8733 | 5.0 | 780 | 0.6732 | 0.5343 |
0.8733 | 6.0 | 936 | 0.5740 | 0.6137 |
0.8394 | 7.0 | 1092 | 0.7296 | 0.5632 |
0.8394 | 8.0 | 1248 | 0.8035 | 0.5668 |
0.8394 | 9.0 | 1404 | 0.6425 | 0.6209 |
0.7591 | 10.0 | 1560 | 0.4622 | 0.6643 |
0.7591 | 11.0 | 1716 | 0.4437 | 0.6859 |
0.7591 | 12.0 | 1872 | 0.4827 | 0.6787 |
0.6772 | 13.0 | 2028 | 0.5774 | 0.6715 |
0.6772 | 14.0 | 2184 | 0.4063 | 0.7112 |
0.6772 | 15.0 | 2340 | 0.5000 | 0.6498 |
0.6772 | 16.0 | 2496 | 0.4834 | 0.6570 |
0.6497 | 17.0 | 2652 | 0.5429 | 0.6931 |
0.6497 | 18.0 | 2808 | 0.4595 | 0.7148 |
0.6497 | 19.0 | 2964 | 0.3976 | 0.6787 |
0.6063 | 20.0 | 3120 | 0.3676 | 0.7004 |
0.6063 | 21.0 | 3276 | 0.4152 | 0.7329 |
0.6063 | 22.0 | 3432 | 0.4491 | 0.6643 |
0.5763 | 23.0 | 3588 | 0.4205 | 0.6968 |
0.5763 | 24.0 | 3744 | 0.3677 | 0.7112 |
0.5763 | 25.0 | 3900 | 0.4396 | 0.6606 |
0.5433 | 26.0 | 4056 | 0.3519 | 0.7292 |
0.5433 | 27.0 | 4212 | 0.4936 | 0.7329 |
0.5433 | 28.0 | 4368 | 0.5706 | 0.6209 |
0.5217 | 29.0 | 4524 | 0.5359 | 0.6643 |
0.5217 | 30.0 | 4680 | 0.3722 | 0.7256 |
0.5217 | 31.0 | 4836 | 0.4510 | 0.6498 |
0.5217 | 32.0 | 4992 | 0.4153 | 0.7076 |
0.4772 | 33.0 | 5148 | 0.4060 | 0.7292 |
0.4772 | 34.0 | 5304 | 0.4248 | 0.7112 |
0.4772 | 35.0 | 5460 | 0.3862 | 0.7184 |
0.46 | 36.0 | 5616 | 0.4376 | 0.6715 |
0.46 | 37.0 | 5772 | 0.4369 | 0.6751 |
0.46 | 38.0 | 5928 | 0.3735 | 0.7112 |
0.4145 | 39.0 | 6084 | 0.3600 | 0.7256 |
0.4145 | 40.0 | 6240 | 0.3753 | 0.7401 |
0.4145 | 41.0 | 6396 | 0.4377 | 0.7437 |
0.4086 | 42.0 | 6552 | 0.4095 | 0.7509 |
0.4086 | 43.0 | 6708 | 0.4555 | 0.7112 |
0.4086 | 44.0 | 6864 | 0.4092 | 0.7365 |
0.3716 | 45.0 | 7020 | 0.4073 | 0.6968 |
0.3716 | 46.0 | 7176 | 0.4190 | 0.7220 |
0.3716 | 47.0 | 7332 | 0.4445 | 0.7617 |
0.3716 | 48.0 | 7488 | 0.4113 | 0.7112 |
0.3526 | 49.0 | 7644 | 0.4075 | 0.7184 |
0.3526 | 50.0 | 7800 | 0.3924 | 0.7437 |
0.3526 | 51.0 | 7956 | 0.3993 | 0.7184 |
0.3175 | 52.0 | 8112 | 0.4196 | 0.7292 |
0.3175 | 53.0 | 8268 | 0.4894 | 0.6931 |
0.3175 | 54.0 | 8424 | 0.4043 | 0.7256 |
0.3204 | 55.0 | 8580 | 0.4841 | 0.6895 |
0.3204 | 56.0 | 8736 | 0.3880 | 0.7220 |
0.3204 | 57.0 | 8892 | 0.5248 | 0.7040 |
0.3093 | 58.0 | 9048 | 0.3957 | 0.7220 |
0.3093 | 59.0 | 9204 | 0.4407 | 0.7292 |
0.3093 | 60.0 | 9360 | 0.3696 | 0.7292 |
0.3068 | 61.0 | 9516 | 0.3891 | 0.7148 |
0.3068 | 62.0 | 9672 | 0.4251 | 0.7220 |
0.3068 | 63.0 | 9828 | 0.4027 | 0.7509 |
0.3068 | 64.0 | 9984 | 0.3926 | 0.7329 |
0.2853 | 65.0 | 10140 | 0.3853 | 0.7329 |
0.2853 | 66.0 | 10296 | 0.3718 | 0.7329 |
0.2853 | 67.0 | 10452 | 0.3739 | 0.7401 |
0.2705 | 68.0 | 10608 | 0.3705 | 0.7653 |
0.2705 | 69.0 | 10764 | 0.3788 | 0.7365 |
0.2705 | 70.0 | 10920 | 0.3832 | 0.7329 |
0.2643 | 71.0 | 11076 | 0.3846 | 0.7509 |
0.2643 | 72.0 | 11232 | 0.3731 | 0.7545 |
0.2643 | 73.0 | 11388 | 0.3909 | 0.7329 |
0.2604 | 74.0 | 11544 | 0.3711 | 0.7437 |
0.2604 | 75.0 | 11700 | 0.3693 | 0.7437 |
0.2604 | 76.0 | 11856 | 0.3797 | 0.7292 |
0.2573 | 77.0 | 12012 | 0.3761 | 0.7329 |
0.2573 | 78.0 | 12168 | 0.3799 | 0.7220 |
0.2573 | 79.0 | 12324 | 0.3657 | 0.7473 |
0.2573 | 80.0 | 12480 | 0.3677 | 0.7329 |
Framework versions
- Transformers 4.26.1
- Pytorch 2.0.1+cu118
- Datasets 2.12.0
- Tokenizers 0.13.3