<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. -->
perioli_manifesti_v9.2
This model is a fine-tuned version of microsoft/layoutlmv3-base on the sroie dataset. It achieves the following results on the evaluation set:
- Loss: 0.0229
- Precision: 0.9533
- Recall: 0.9717
- F1: 0.9624
- Accuracy: 0.9956
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- training_steps: 3500
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
No log | 0.35 | 100 | 0.1440 | 0.6850 | 0.6873 | 0.6862 | 0.9534 |
No log | 0.71 | 200 | 0.0698 | 0.8219 | 0.8956 | 0.8571 | 0.9807 |
No log | 1.06 | 300 | 0.0422 | 0.8893 | 0.9280 | 0.9082 | 0.9878 |
No log | 1.41 | 400 | 0.0295 | 0.9195 | 0.9407 | 0.9300 | 0.9909 |
0.1669 | 1.77 | 500 | 0.0309 | 0.9044 | 0.9459 | 0.9247 | 0.9906 |
0.1669 | 2.12 | 600 | 0.0301 | 0.9113 | 0.9521 | 0.9312 | 0.9913 |
0.1669 | 2.47 | 700 | 0.0234 | 0.9482 | 0.9597 | 0.9539 | 0.9940 |
0.1669 | 2.83 | 800 | 0.0269 | 0.9289 | 0.9642 | 0.9462 | 0.9933 |
0.1669 | 3.18 | 900 | 0.0259 | 0.9291 | 0.9628 | 0.9457 | 0.9933 |
0.0254 | 3.53 | 1000 | 0.0218 | 0.9470 | 0.9673 | 0.9570 | 0.9948 |
0.0254 | 3.89 | 1100 | 0.0218 | 0.9557 | 0.9669 | 0.9613 | 0.9951 |
0.0254 | 4.24 | 1200 | 0.0198 | 0.9511 | 0.9731 | 0.9620 | 0.9955 |
0.0254 | 4.59 | 1300 | 0.0228 | 0.9458 | 0.9690 | 0.9573 | 0.9948 |
0.0254 | 4.95 | 1400 | 0.0222 | 0.9562 | 0.9697 | 0.9629 | 0.9953 |
0.0153 | 5.3 | 1500 | 0.0221 | 0.9438 | 0.9717 | 0.9575 | 0.9951 |
0.0153 | 5.65 | 1600 | 0.0235 | 0.9397 | 0.9662 | 0.9528 | 0.9945 |
0.0153 | 6.01 | 1700 | 0.0196 | 0.9582 | 0.9728 | 0.9654 | 0.9959 |
0.0153 | 6.36 | 1800 | 0.0209 | 0.9540 | 0.9728 | 0.9633 | 0.9956 |
0.0153 | 6.71 | 1900 | 0.0234 | 0.9402 | 0.9697 | 0.9547 | 0.9948 |
0.0107 | 7.07 | 2000 | 0.0202 | 0.9615 | 0.9728 | 0.9671 | 0.9960 |
0.0107 | 7.42 | 2100 | 0.0222 | 0.9554 | 0.9741 | 0.9647 | 0.9958 |
0.0107 | 7.77 | 2200 | 0.0223 | 0.9500 | 0.9686 | 0.9592 | 0.9952 |
0.0107 | 8.13 | 2300 | 0.0208 | 0.9497 | 0.9690 | 0.9592 | 0.9951 |
0.0107 | 8.48 | 2400 | 0.0184 | 0.9629 | 0.9741 | 0.9685 | 0.9962 |
0.0077 | 8.83 | 2500 | 0.0231 | 0.9463 | 0.9714 | 0.9587 | 0.9951 |
0.0077 | 9.19 | 2600 | 0.0249 | 0.9412 | 0.9717 | 0.9562 | 0.9950 |
0.0077 | 9.54 | 2700 | 0.0203 | 0.9625 | 0.9738 | 0.9681 | 0.9962 |
0.0077 | 9.89 | 2800 | 0.0240 | 0.9459 | 0.9704 | 0.9580 | 0.9951 |
0.0077 | 10.25 | 2900 | 0.0213 | 0.9573 | 0.9741 | 0.9657 | 0.9960 |
0.0054 | 10.6 | 3000 | 0.0208 | 0.9596 | 0.9741 | 0.9668 | 0.9961 |
0.0054 | 10.95 | 3100 | 0.0213 | 0.9596 | 0.9745 | 0.9670 | 0.9961 |
0.0054 | 11.31 | 3200 | 0.0213 | 0.9599 | 0.9728 | 0.9663 | 0.9961 |
0.0054 | 11.66 | 3300 | 0.0235 | 0.9511 | 0.9714 | 0.9611 | 0.9954 |
0.0054 | 12.01 | 3400 | 0.0227 | 0.9540 | 0.9724 | 0.9631 | 0.9957 |
0.0042 | 12.37 | 3500 | 0.0229 | 0.9533 | 0.9717 | 0.9624 | 0.9956 |
Framework versions
- Transformers 4.28.0
- Pytorch 2.0.1+cu118
- Datasets 2.2.2
- Tokenizers 0.13.3