<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. -->
perioli_manifesti_v9.3
This model is a fine-tuned version of microsoft/layoutlmv3-base on the sroie dataset. It achieves the following results on the evaluation set:
- Loss: 0.0203
- Precision: 0.9551
- Recall: 0.9745
- F1: 0.9647
- Accuracy: 0.9959
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- training_steps: 3500
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
No log | 0.33 | 100 | 0.1309 | 0.7921 | 0.7604 | 0.7759 | 0.9671 |
No log | 0.65 | 200 | 0.0526 | 0.8782 | 0.8921 | 0.8851 | 0.9850 |
No log | 0.98 | 300 | 0.0401 | 0.9011 | 0.9231 | 0.9120 | 0.9887 |
No log | 1.3 | 400 | 0.0349 | 0.9080 | 0.9386 | 0.9231 | 0.9905 |
0.1604 | 1.63 | 500 | 0.0304 | 0.9081 | 0.9438 | 0.9256 | 0.9908 |
0.1604 | 1.95 | 600 | 0.0247 | 0.9368 | 0.9559 | 0.9463 | 0.9935 |
0.1604 | 2.28 | 700 | 0.0229 | 0.9444 | 0.9593 | 0.9518 | 0.9942 |
0.1604 | 2.61 | 800 | 0.0231 | 0.9324 | 0.9604 | 0.9462 | 0.9935 |
0.1604 | 2.93 | 900 | 0.0251 | 0.9330 | 0.9645 | 0.9485 | 0.9939 |
0.0267 | 3.26 | 1000 | 0.0234 | 0.9485 | 0.9659 | 0.9571 | 0.9950 |
0.0267 | 3.58 | 1100 | 0.0219 | 0.9463 | 0.9662 | 0.9562 | 0.9948 |
0.0267 | 3.91 | 1200 | 0.0256 | 0.9309 | 0.9662 | 0.9482 | 0.9939 |
0.0267 | 4.23 | 1300 | 0.0209 | 0.9533 | 0.9721 | 0.9626 | 0.9956 |
0.0267 | 4.56 | 1400 | 0.0221 | 0.9484 | 0.9638 | 0.9561 | 0.9948 |
0.0164 | 4.89 | 1500 | 0.0179 | 0.9591 | 0.9690 | 0.9640 | 0.9957 |
0.0164 | 5.21 | 1600 | 0.0187 | 0.9498 | 0.9717 | 0.9606 | 0.9954 |
0.0164 | 5.54 | 1700 | 0.0215 | 0.9516 | 0.9697 | 0.9606 | 0.9952 |
0.0164 | 5.86 | 1800 | 0.0213 | 0.9543 | 0.9707 | 0.9624 | 0.9956 |
0.0164 | 6.19 | 1900 | 0.0212 | 0.9530 | 0.9710 | 0.9619 | 0.9955 |
0.0106 | 6.51 | 2000 | 0.0237 | 0.9466 | 0.9721 | 0.9592 | 0.9953 |
0.0106 | 6.84 | 2100 | 0.0222 | 0.9511 | 0.9724 | 0.9616 | 0.9956 |
0.0106 | 7.17 | 2200 | 0.0221 | 0.9481 | 0.9704 | 0.9591 | 0.9952 |
0.0106 | 7.49 | 2300 | 0.0198 | 0.9463 | 0.9714 | 0.9587 | 0.9952 |
0.0106 | 7.82 | 2400 | 0.0198 | 0.9528 | 0.9741 | 0.9634 | 0.9957 |
0.0075 | 8.14 | 2500 | 0.0197 | 0.9589 | 0.9741 | 0.9665 | 0.9961 |
0.0075 | 8.47 | 2600 | 0.0204 | 0.9616 | 0.9759 | 0.9687 | 0.9964 |
0.0075 | 8.79 | 2700 | 0.0209 | 0.9538 | 0.9741 | 0.9638 | 0.9958 |
0.0075 | 9.12 | 2800 | 0.0222 | 0.9521 | 0.9721 | 0.9620 | 0.9955 |
0.0075 | 9.45 | 2900 | 0.0195 | 0.9623 | 0.9755 | 0.9688 | 0.9964 |
0.0059 | 9.77 | 3000 | 0.0204 | 0.9550 | 0.9738 | 0.9643 | 0.9959 |
0.0059 | 10.1 | 3100 | 0.0204 | 0.9576 | 0.9735 | 0.9655 | 0.9961 |
0.0059 | 10.42 | 3200 | 0.0201 | 0.9550 | 0.9731 | 0.9640 | 0.9959 |
0.0059 | 10.75 | 3300 | 0.0205 | 0.9547 | 0.9735 | 0.9640 | 0.9959 |
0.0059 | 11.07 | 3400 | 0.0206 | 0.9541 | 0.9741 | 0.9640 | 0.9959 |
0.0041 | 11.4 | 3500 | 0.0203 | 0.9551 | 0.9745 | 0.9647 | 0.9959 |
Framework versions
- Transformers 4.28.0
- Pytorch 2.0.1+cu118
- Datasets 2.2.2
- Tokenizers 0.13.3