<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. -->
perioli_manifesti_v9.4
This model is a fine-tuned version of microsoft/layoutlmv3-base on the sroie dataset. It achieves the following results on the evaluation set:
- Loss: 0.0170
- Precision: 0.9636
- Recall: 0.9773
- F1: 0.9704
- Accuracy: 0.9967
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- training_steps: 3000
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
No log | 0.31 | 100 | 0.1646 | 0.6916 | 0.6226 | 0.6553 | 0.9487 |
No log | 0.62 | 200 | 0.0816 | 0.8202 | 0.8779 | 0.8481 | 0.9788 |
No log | 0.93 | 300 | 0.0412 | 0.8885 | 0.9251 | 0.9064 | 0.9880 |
No log | 1.25 | 400 | 0.0298 | 0.9273 | 0.9375 | 0.9324 | 0.9918 |
0.1823 | 1.56 | 500 | 0.0269 | 0.9388 | 0.9418 | 0.9403 | 0.9925 |
0.1823 | 1.87 | 600 | 0.0211 | 0.9563 | 0.9553 | 0.9558 | 0.9942 |
0.1823 | 2.18 | 700 | 0.0249 | 0.9287 | 0.9663 | 0.9471 | 0.9936 |
0.1823 | 2.49 | 800 | 0.0174 | 0.9547 | 0.9659 | 0.9603 | 0.9952 |
0.1823 | 2.8 | 900 | 0.0170 | 0.9564 | 0.9666 | 0.9615 | 0.9955 |
0.0283 | 3.12 | 1000 | 0.0185 | 0.9501 | 0.9663 | 0.9581 | 0.9950 |
0.0283 | 3.43 | 1100 | 0.0170 | 0.9594 | 0.9720 | 0.9656 | 0.9960 |
0.0283 | 3.74 | 1200 | 0.0196 | 0.9462 | 0.9677 | 0.9568 | 0.9949 |
0.0283 | 4.05 | 1300 | 0.0171 | 0.9536 | 0.9702 | 0.9618 | 0.9957 |
0.0283 | 4.36 | 1400 | 0.0169 | 0.9612 | 0.9752 | 0.9681 | 0.9964 |
0.0156 | 4.67 | 1500 | 0.0151 | 0.9646 | 0.9759 | 0.9702 | 0.9967 |
0.0156 | 4.98 | 1600 | 0.0166 | 0.9573 | 0.9720 | 0.9646 | 0.9959 |
0.0156 | 5.3 | 1700 | 0.0160 | 0.9628 | 0.9748 | 0.9688 | 0.9965 |
0.0156 | 5.61 | 1800 | 0.0158 | 0.9588 | 0.9748 | 0.9667 | 0.9963 |
0.0156 | 5.92 | 1900 | 0.0168 | 0.9574 | 0.9737 | 0.9655 | 0.9961 |
0.012 | 6.23 | 2000 | 0.0198 | 0.9525 | 0.9748 | 0.9635 | 0.9959 |
0.012 | 6.54 | 2100 | 0.0196 | 0.9508 | 0.9737 | 0.9621 | 0.9958 |
0.012 | 6.85 | 2200 | 0.0166 | 0.9628 | 0.9744 | 0.9686 | 0.9965 |
0.012 | 7.17 | 2300 | 0.0171 | 0.9636 | 0.9773 | 0.9704 | 0.9967 |
0.012 | 7.48 | 2400 | 0.0170 | 0.9619 | 0.9769 | 0.9694 | 0.9967 |
0.0087 | 7.79 | 2500 | 0.0179 | 0.9612 | 0.9755 | 0.9683 | 0.9965 |
0.0087 | 8.1 | 2600 | 0.0168 | 0.9649 | 0.9766 | 0.9707 | 0.9967 |
0.0087 | 8.41 | 2700 | 0.0179 | 0.9642 | 0.9766 | 0.9704 | 0.9967 |
0.0087 | 8.72 | 2800 | 0.0179 | 0.9636 | 0.9780 | 0.9708 | 0.9968 |
0.0087 | 9.03 | 2900 | 0.0172 | 0.9626 | 0.9769 | 0.9697 | 0.9967 |
0.0065 | 9.35 | 3000 | 0.0170 | 0.9636 | 0.9773 | 0.9704 | 0.9967 |
Framework versions
- Transformers 4.28.0
- Pytorch 2.0.1+cu118
- Datasets 2.2.2
- Tokenizers 0.13.3