LunarLander-v2 deep-reinforcement-learning reinforcement-learning stable-baselines3

PPO Agent playing LunarLander-v2

This is a trained model of a PPO agent playing LunarLander-v2 using the stable-baselines3 library.

Usage (with Stable-baselines3)

from stable_baselines3 import PPO
from stable_baselines3.common.monitor import Monitor
from huggingface_sb3 import load_from_hub

repo_id = "potello/ppo-LunarLander-v2"
filename = "ppo-LunarLander-v2.zip"

custom_objects = {
            "learning_rate": 0.0,
            "lr_schedule": lambda _: 0.0,
            "clip_range": lambda _: 0.0,
}

checkpoint = load_from_hub(repo_id, filename)
model = PPO.load(checkpoint, custom_objects=custom_objects, print_system_info=True)

eval_env = Monitor(gym.make("LunarLander-v2"))
mean_reward, std_reward = evaluate_policy(model, eval_env, n_eval_episodes=10, deterministic=True)
print(f"mean_reward={mean_reward:.2f} +/- {std_reward}")