<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. -->
hubert-large-korean-finetuned-korspeech-ser
This model is a fine-tuned version of team-lucid/hubert-large-korean on the None dataset. It achieves the following results on the evaluation set:
- Loss: 1.0010
- Macro F1: 0.6297
- Accuracy: 0.6321
- Weighted f1: 0.6297
- Micro f1: 0.6321
- Weighted recall: 0.6321
- Micro recall: 0.6321
- Macro recall: 0.6321
- Weighted precision: 0.6354
- Micro precision: 0.6321
- Macro precision: 0.6354
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- lr_scheduler_warmup_steps: 100
- num_epochs: 6
Training results
Training Loss | Epoch | Step | Validation Loss | Macro F1 | Accuracy | Weighted f1 | Micro f1 | Weighted recall | Micro recall | Macro recall | Weighted precision | Micro precision | Macro precision |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1.3419 | 0.28 | 100 | 1.2665 | 0.4034 | 0.4276 | 0.4034 | 0.4276 | 0.4276 | 0.4276 | 0.4276 | 0.4520 | 0.4276 | 0.4520 |
1.2356 | 0.57 | 200 | 1.2013 | 0.4506 | 0.4702 | 0.4506 | 0.4702 | 0.4702 | 0.4702 | 0.4702 | 0.4645 | 0.4702 | 0.4645 |
1.1905 | 0.85 | 300 | 1.2031 | 0.4480 | 0.4957 | 0.4480 | 0.4957 | 0.4957 | 0.4957 | 0.4957 | 0.5256 | 0.4957 | 0.5256 |
1.1335 | 1.13 | 400 | 1.1278 | 0.5083 | 0.5178 | 0.5083 | 0.5178 | 0.5178 | 0.5178 | 0.5178 | 0.5178 | 0.5178 | 0.5178 |
1.0794 | 1.42 | 500 | 1.0613 | 0.5507 | 0.5518 | 0.5507 | 0.5518 | 0.5518 | 0.5518 | 0.5518 | 0.5511 | 0.5518 | 0.5511 |
1.0535 | 1.7 | 600 | 1.0259 | 0.5517 | 0.5618 | 0.5517 | 0.5618 | 0.5618 | 0.5618 | 0.5618 | 0.5630 | 0.5618 | 0.5630 |
1.0396 | 1.99 | 700 | 1.0276 | 0.5514 | 0.5554 | 0.5514 | 0.5554 | 0.5554 | 0.5554 | 0.5554 | 0.5557 | 0.5554 | 0.5557 |
0.9841 | 2.27 | 800 | 1.0614 | 0.5440 | 0.5611 | 0.5440 | 0.5611 | 0.5611 | 0.5611 | 0.5611 | 0.5698 | 0.5611 | 0.5698 |
0.9527 | 2.55 | 900 | 1.0643 | 0.5405 | 0.5547 | 0.5405 | 0.5547 | 0.5547 | 0.5547 | 0.5547 | 0.5646 | 0.5547 | 0.5646 |
0.9616 | 2.84 | 1000 | 0.9971 | 0.5850 | 0.5895 | 0.5850 | 0.5895 | 0.5895 | 0.5895 | 0.5895 | 0.5924 | 0.5895 | 0.5924 |
0.9284 | 3.12 | 1100 | 1.0220 | 0.5626 | 0.5717 | 0.5626 | 0.5717 | 0.5717 | 0.5717 | 0.5717 | 0.5808 | 0.5717 | 0.5808 |
0.8744 | 3.4 | 1200 | 1.0368 | 0.5778 | 0.5831 | 0.5778 | 0.5831 | 0.5831 | 0.5831 | 0.5831 | 0.5884 | 0.5831 | 0.5884 |
0.8654 | 3.69 | 1300 | 1.0320 | 0.5925 | 0.5980 | 0.5925 | 0.5980 | 0.5980 | 0.5980 | 0.5980 | 0.6057 | 0.5980 | 0.6057 |
0.8716 | 3.97 | 1400 | 0.9965 | 0.5875 | 0.5930 | 0.5875 | 0.5930 | 0.5930 | 0.5930 | 0.5930 | 0.6001 | 0.5930 | 0.6001 |
0.7969 | 4.26 | 1500 | 0.9810 | 0.6102 | 0.6122 | 0.6102 | 0.6122 | 0.6122 | 0.6122 | 0.6122 | 0.6176 | 0.6122 | 0.6176 |
0.799 | 4.54 | 1600 | 0.9982 | 0.6075 | 0.6072 | 0.6075 | 0.6072 | 0.6072 | 0.6072 | 0.6072 | 0.6094 | 0.6072 | 0.6094 |
0.7785 | 4.82 | 1700 | 0.9812 | 0.6092 | 0.6136 | 0.6092 | 0.6136 | 0.6136 | 0.6136 | 0.6136 | 0.6136 | 0.6136 | 0.6136 |
0.7653 | 5.11 | 1800 | 0.9913 | 0.6124 | 0.6165 | 0.6124 | 0.6165 | 0.6165 | 0.6165 | 0.6165 | 0.6208 | 0.6165 | 0.6208 |
0.7192 | 5.39 | 1900 | 1.0057 | 0.6201 | 0.6207 | 0.6201 | 0.6207 | 0.6207 | 0.6207 | 0.6207 | 0.6244 | 0.6207 | 0.6244 |
0.7201 | 5.67 | 2000 | 1.0022 | 0.6207 | 0.6229 | 0.6207 | 0.6229 | 0.6229 | 0.6229 | 0.6229 | 0.6249 | 0.6229 | 0.6249 |
0.7351 | 5.96 | 2100 | 1.0010 | 0.6297 | 0.6321 | 0.6297 | 0.6321 | 0.6321 | 0.6321 | 0.6321 | 0.6354 | 0.6321 | 0.6354 |
Framework versions
- Transformers 4.30.2
- Pytorch 2.0.0
- Datasets 2.1.0
- Tokenizers 0.13.3