code

Quantization with bitsandbytes
8-bit / nf4 / float16
-Mediocre πŸ₯±

<p align="center"> πŸ€— <a href="https://huggingface.co/WizardLM" target="_blank">HF Repo</a> β€’πŸ± <a href="https://github.com/nlpxucan/WizardLM" target="_blank">Github Repo</a> β€’ 🐦 <a href="https://twitter.com/WizardLM_AI" target="_blank">Twitter</a> β€’ πŸ“ƒ <a href="https://arxiv.org/abs/2304.12244" target="_blank">[WizardLM]</a> β€’ πŸ“ƒ <a href="https://arxiv.org/abs/2306.08568" target="_blank">[WizardCoder]</a> β€’ πŸ“ƒ <a href="https://arxiv.org/abs/2308.09583" target="_blank">[WizardMath]</a> <br> </p> <p align="center"> πŸ‘‹ Join our <a href="https://discord.gg/VZjjHtWrKs" target="_blank">Discord</a> </p>

News

❗Note: There are two HumanEval results of GPT4 and ChatGPT-3.5. The 67.0 and 48.1 are reported by the official GPT4 Report (2023/03/15) of OpenAI. The 82.0 and 72.5 are tested by ourselves with the latest API (2023/08/26).

Model Checkpoint Paper HumanEval MBPP Demo License
WizardCoder-Python-34B-V1.0 πŸ€— <a href="https://huggingface.co/WizardLM/WizardCoder-Python-34B-V1.0" target="_blank">HF Link</a> πŸ“ƒ <a href="https://arxiv.org/abs/2306.08568" target="_blank">[WizardCoder]</a> 73.2 61.2 Demo <a href="https://ai.meta.com/resources/models-and-libraries/llama-downloads/" target="_blank">Llama2</a>
WizardCoder-15B-V1.0 πŸ€— <a href="https://huggingface.co/WizardLM/WizardCoder-15B-V1.0" target="_blank">HF Link</a> πŸ“ƒ <a href="https://arxiv.org/abs/2306.08568" target="_blank">[WizardCoder]</a> 59.8 50.6 -- <a href="https://huggingface.co/spaces/bigcode/bigcode-model-license-agreement" target="_blank">OpenRAIL-M</a>
WizardCoder-Python-13B-V1.0 πŸ€— <a href="https://huggingface.co/WizardLM/WizardCoder-Python-13B-V1.0" target="_blank">HF Link</a> πŸ“ƒ <a href="https://arxiv.org/abs/2306.08568" target="_blank">[WizardCoder]</a> 64.0 55.6 -- <a href="https://ai.meta.com/resources/models-and-libraries/llama-downloads/" target="_blank">Llama2</a>
WizardCoder-3B-V1.0 πŸ€— <a href="https://huggingface.co/WizardLM/WizardCoder-3B-V1.0" target="_blank">HF Link</a> πŸ“ƒ <a href="https://arxiv.org/abs/2306.08568" target="_blank">[WizardCoder]</a> 34.8 37.4 Demo <a href="https://huggingface.co/spaces/bigcode/bigcode-model-license-agreement" target="_blank">OpenRAIL-M</a>
WizardCoder-1B-V1.0 πŸ€— <a href="https://huggingface.co/WizardLM/WizardCoder-1B-V1.0" target="_blank">HF Link</a> πŸ“ƒ <a href="https://arxiv.org/abs/2306.08568" target="_blank">[WizardCoder]</a> 23.8 28.6 -- <a href="https://huggingface.co/spaces/bigcode/bigcode-model-license-agreement" target="_blank">OpenRAIL-M</a>

<font size=4>

Model Checkpoint Paper GSM8k MATH Online Demo License
WizardMath-70B-V1.0 πŸ€— <a href="https://huggingface.co/WizardLM/WizardMath-70B-V1.0" target="_blank">HF Link</a> πŸ“ƒ <a href="https://arxiv.org/abs/2308.09583" target="_blank">[WizardMath]</a> 81.6 22.7 Demo <a href="https://ai.meta.com/resources/models-and-libraries/llama-downloads/" target="_blank">Llama 2 </a>
WizardMath-13B-V1.0 πŸ€— <a href="https://huggingface.co/WizardLM/WizardMath-13B-V1.0" target="_blank">HF Link</a> πŸ“ƒ <a href="https://arxiv.org/abs/2308.09583" target="_blank">[WizardMath]</a> 63.9 14.0 Demo <a href="https://ai.meta.com/resources/models-and-libraries/llama-downloads/" target="_blank">Llama 2 </a>
WizardMath-7B-V1.0 πŸ€— <a href="https://huggingface.co/WizardLM/WizardMath-7B-V1.0" target="_blank">HF Link</a> πŸ“ƒ <a href="https://arxiv.org/abs/2308.09583" target="_blank">[WizardMath]</a> 54.9 10.7 Demo <a href="https://ai.meta.com/resources/models-and-libraries/llama-downloads/" target="_blank">Llama 2 </a>
</font>

<font size=4>

<sup>Model</sup> <sup>Checkpoint</sup> <sup>Paper</sup> <sup>MT-Bench</sup> <sup>AlpacaEval</sup> <sup>GSM8k</sup> <sup>HumanEval</sup> <sup>License</sup>
<sup>WizardLM-70B-V1.0</sup> <sup>πŸ€— <a href="https://huggingface.co/WizardLM/WizardLM-70B-V1.0" target="_blank">HF Link</a> </sup> <sup>πŸ“ƒComing Soon</sup> <sup>7.78</sup> <sup>92.91%</sup> <sup>77.6%</sup> <sup> 50.6</sup> <sup> <a href="https://ai.meta.com/resources/models-and-libraries/llama-downloads/" target="_blank">Llama 2 License </a></sup>
<sup>WizardLM-13B-V1.2</sup> <sup>πŸ€— <a href="https://huggingface.co/WizardLM/WizardLM-13B-V1.2" target="_blank">HF Link</a> </sup> <sup>7.06</sup> <sup>89.17%</sup> <sup>55.3%</sup> <sup>36.6 </sup> <sup> <a href="https://ai.meta.com/resources/models-and-libraries/llama-downloads/" target="_blank">Llama 2 License </a></sup>
<sup>WizardLM-13B-V1.1</sup> <sup> πŸ€— <a href="https://huggingface.co/WizardLM/WizardLM-13B-V1.1" target="_blank">HF Link</a> </sup> <sup>6.76</sup> <sup>86.32%</sup> <sup>25.0 </sup> <sup>Non-commercial</sup>
<sup>WizardLM-30B-V1.0</sup> <sup>πŸ€— <a href="https://huggingface.co/WizardLM/WizardLM-30B-V1.0" target="_blank">HF Link</a></sup> <sup>7.01</sup> <sup>37.8 </sup> <sup>Non-commercial</sup>
<sup>WizardLM-13B-V1.0</sup> <sup>πŸ€— <a href="https://huggingface.co/WizardLM/WizardLM-13B-V1.0" target="_blank">HF Link</a> </sup> <sup>6.35</sup> <sup>75.31%</sup> <sup> 24.0 </sup> <sup>Non-commercial</sup>
<sup>WizardLM-7B-V1.0 </sup> <sup>πŸ€— <a href="https://huggingface.co/WizardLM/WizardLM-7B-V1.0" target="_blank">HF Link</a> </sup> <sup> πŸ“ƒ <a href="https://arxiv.org/abs/2304.12244" target="_blank">[WizardLM]</a> </sup> <sup>19.1 </sup> <sup> Non-commercial</sup>
</font>

Comparing WizardCoder-Python-34B-V1.0 with Other LLMs.

πŸ”₯ The following figure shows that our WizardCoder-Python-34B-V1.0 attains the second position in this benchmark, surpassing GPT4 (2023/03/15, 73.2 vs. 67.0), ChatGPT-3.5 (73.2 vs. 72.5) and Claude2 (73.2 vs. 71.2).

<p align="center" width="100%"> <a ><img src="https://raw.githubusercontent.com/nlpxucan/WizardLM/main/WizardCoder/imgs/compare_sota.png" alt="WizardCoder" style="width: 96%; min-width: 300px; display: block; margin: auto;"></a> </p>

Prompt Format

"Below is an instruction that describes a task. Write a response that appropriately completes the request.\n\n### Instruction:\n{instruction}\n\n### Response:"

Inference Demo Script

We provide the inference demo code here.

Citation

Please cite the repo if you use the data or code in this repo.

@misc{luo2023wizardcoder,
      title={WizardCoder: Empowering Code Large Language Models with Evol-Instruct}, 
      author={Ziyang Luo and Can Xu and Pu Zhao and Qingfeng Sun and Xiubo Geng and Wenxiang Hu and Chongyang Tao and Jing Ma and Qingwei Lin and Daxin Jiang},
      year={2023},
}