<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. -->
perioli_vgm_v7.7
This model is a fine-tuned version of microsoft/layoutlmv3-base on the sroie dataset. It achieves the following results on the evaluation set:
- Loss: 0.0310
- Precision: 0.8970
- Recall: 0.9012
- F1: 0.8991
- Accuracy: 0.9952
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- training_steps: 3500
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
No log | 0.38 | 100 | 0.0928 | 0.5340 | 0.4988 | 0.5158 | 0.9763 |
No log | 0.75 | 200 | 0.0518 | 0.7512 | 0.7176 | 0.7341 | 0.9887 |
No log | 1.13 | 300 | 0.0369 | 0.7555 | 0.8141 | 0.7837 | 0.9904 |
No log | 1.5 | 400 | 0.0327 | 0.8182 | 0.8047 | 0.8114 | 0.9911 |
0.0775 | 1.88 | 500 | 0.0292 | 0.8018 | 0.8565 | 0.8282 | 0.9924 |
0.0775 | 2.26 | 600 | 0.0241 | 0.8444 | 0.8682 | 0.8561 | 0.9938 |
0.0775 | 2.63 | 700 | 0.0248 | 0.8694 | 0.8612 | 0.8652 | 0.9943 |
0.0775 | 3.01 | 800 | 0.0265 | 0.8866 | 0.9012 | 0.8938 | 0.9954 |
0.0775 | 3.38 | 900 | 0.0251 | 0.8979 | 0.8894 | 0.8936 | 0.9955 |
0.0143 | 3.76 | 1000 | 0.0218 | 0.9028 | 0.9176 | 0.9102 | 0.9960 |
0.0143 | 4.14 | 1100 | 0.0259 | 0.8498 | 0.8918 | 0.8703 | 0.9943 |
0.0143 | 4.51 | 1200 | 0.0276 | 0.8621 | 0.8824 | 0.8721 | 0.9950 |
0.0143 | 4.89 | 1300 | 0.0235 | 0.9038 | 0.9059 | 0.9048 | 0.9963 |
0.0143 | 5.26 | 1400 | 0.0254 | 0.9038 | 0.9059 | 0.9048 | 0.9963 |
0.0045 | 5.64 | 1500 | 0.0248 | 0.9005 | 0.8941 | 0.8973 | 0.9961 |
0.0045 | 6.02 | 1600 | 0.0316 | 0.8902 | 0.8965 | 0.8933 | 0.9947 |
0.0045 | 6.39 | 1700 | 0.0323 | 0.8575 | 0.8918 | 0.8743 | 0.9949 |
0.0045 | 6.77 | 1800 | 0.0288 | 0.9038 | 0.9059 | 0.9048 | 0.9960 |
0.0045 | 7.14 | 1900 | 0.0327 | 0.8986 | 0.8965 | 0.8975 | 0.9953 |
0.0031 | 7.52 | 2000 | 0.0281 | 0.8802 | 0.8988 | 0.8894 | 0.9954 |
0.0031 | 7.89 | 2100 | 0.0260 | 0.8907 | 0.92 | 0.9051 | 0.9957 |
0.0031 | 8.27 | 2200 | 0.0335 | 0.9133 | 0.8918 | 0.9024 | 0.9953 |
0.0031 | 8.65 | 2300 | 0.0299 | 0.9143 | 0.9035 | 0.9089 | 0.9957 |
0.0031 | 9.02 | 2400 | 0.0304 | 0.9091 | 0.8941 | 0.9015 | 0.9955 |
0.0017 | 9.4 | 2500 | 0.0296 | 0.8874 | 0.9082 | 0.8977 | 0.9953 |
0.0017 | 9.77 | 2600 | 0.0280 | 0.8912 | 0.9059 | 0.8985 | 0.9955 |
0.0017 | 10.15 | 2700 | 0.0285 | 0.8970 | 0.9012 | 0.8991 | 0.9953 |
0.0017 | 10.53 | 2800 | 0.0289 | 0.8912 | 0.9059 | 0.8985 | 0.9953 |
0.0017 | 10.9 | 2900 | 0.0295 | 0.9 | 0.9106 | 0.9053 | 0.9954 |
0.0009 | 11.28 | 3000 | 0.0308 | 0.8741 | 0.8988 | 0.8863 | 0.9950 |
0.0009 | 11.65 | 3100 | 0.0317 | 0.8904 | 0.8988 | 0.8946 | 0.9951 |
0.0009 | 12.03 | 3200 | 0.0339 | 0.8983 | 0.8941 | 0.8962 | 0.9949 |
0.0009 | 12.41 | 3300 | 0.0323 | 0.8946 | 0.8988 | 0.8967 | 0.9951 |
0.0009 | 12.78 | 3400 | 0.0310 | 0.8970 | 0.9012 | 0.8991 | 0.9952 |
0.0004 | 13.16 | 3500 | 0.0310 | 0.8970 | 0.9012 | 0.8991 | 0.9952 |
Framework versions
- Transformers 4.28.0
- Pytorch 2.0.1+cu118
- Datasets 2.2.2
- Tokenizers 0.13.3