<!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. -->
mke10/distilbert-base-uncased-finetuned-ner
This model is a fine-tuned version of distilbert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:
- Train Loss: 0.0339
- Validation Loss: 0.0603
- Train Precision: 0.9245
- Train Recall: 0.9356
- Train F1: 0.9300
- Train Accuracy: 0.9834
- Epoch: 2
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 2631, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01}
- training_precision: float32
Training results
Train Loss | Validation Loss | Train Precision | Train Recall | Train F1 | Train Accuracy | Epoch |
---|---|---|---|---|---|---|
0.1985 | 0.0727 | 0.8930 | 0.9177 | 0.9052 | 0.9786 | 0 |
0.0535 | 0.0605 | 0.9255 | 0.9323 | 0.9289 | 0.9832 | 1 |
0.0339 | 0.0603 | 0.9245 | 0.9356 | 0.9300 | 0.9834 | 2 |
Framework versions
- Transformers 4.32.1
- TensorFlow 2.12.0
- Datasets 2.14.4
- Tokenizers 0.13.3