<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. -->
20230829215851
This model is a fine-tuned version of bert-large-cased on the super_glue dataset. It achieves the following results on the evaluation set:
- Loss: 0.3312
- Accuracy: 0.6538
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.005
- train_batch_size: 16
- eval_batch_size: 8
- seed: 44
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 80.0
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
No log | 1.0 | 35 | 0.4376 | 0.6346 |
No log | 2.0 | 70 | 0.5138 | 0.4327 |
No log | 3.0 | 105 | 0.5153 | 0.6346 |
No log | 4.0 | 140 | 0.3900 | 0.4808 |
No log | 5.0 | 175 | 0.5940 | 0.3654 |
No log | 6.0 | 210 | 0.3471 | 0.6346 |
No log | 7.0 | 245 | 0.3330 | 0.6346 |
No log | 8.0 | 280 | 1.2035 | 0.3942 |
No log | 9.0 | 315 | 0.3783 | 0.4231 |
No log | 10.0 | 350 | 0.4897 | 0.6346 |
No log | 11.0 | 385 | 0.5676 | 0.4135 |
No log | 12.0 | 420 | 0.4807 | 0.375 |
No log | 13.0 | 455 | 0.3328 | 0.6346 |
No log | 14.0 | 490 | 0.3723 | 0.5 |
0.5559 | 15.0 | 525 | 0.5093 | 0.4135 |
0.5559 | 16.0 | 560 | 0.4881 | 0.375 |
0.5559 | 17.0 | 595 | 0.7547 | 0.6346 |
0.5559 | 18.0 | 630 | 0.3326 | 0.6346 |
0.5559 | 19.0 | 665 | 0.4506 | 0.3846 |
0.5559 | 20.0 | 700 | 0.3371 | 0.6346 |
0.5559 | 21.0 | 735 | 0.3596 | 0.6346 |
0.5559 | 22.0 | 770 | 0.3361 | 0.6058 |
0.5559 | 23.0 | 805 | 0.3320 | 0.6346 |
0.5559 | 24.0 | 840 | 0.3634 | 0.6346 |
0.5559 | 25.0 | 875 | 0.3650 | 0.4327 |
0.5559 | 26.0 | 910 | 0.3396 | 0.5385 |
0.5559 | 27.0 | 945 | 0.3389 | 0.6346 |
0.5559 | 28.0 | 980 | 0.3324 | 0.6346 |
0.436 | 29.0 | 1015 | 0.3349 | 0.6346 |
0.436 | 30.0 | 1050 | 0.3328 | 0.6346 |
0.436 | 31.0 | 1085 | 0.3362 | 0.6346 |
0.436 | 32.0 | 1120 | 0.3402 | 0.5769 |
0.436 | 33.0 | 1155 | 0.3349 | 0.6058 |
0.436 | 34.0 | 1190 | 0.3313 | 0.6442 |
0.436 | 35.0 | 1225 | 0.4491 | 0.6346 |
0.436 | 36.0 | 1260 | 0.4079 | 0.3558 |
0.436 | 37.0 | 1295 | 0.3509 | 0.5096 |
0.436 | 38.0 | 1330 | 0.3543 | 0.4615 |
0.436 | 39.0 | 1365 | 0.3491 | 0.6346 |
0.436 | 40.0 | 1400 | 0.4716 | 0.3558 |
0.436 | 41.0 | 1435 | 0.5280 | 0.3654 |
0.436 | 42.0 | 1470 | 0.4004 | 0.4038 |
0.4116 | 43.0 | 1505 | 0.3505 | 0.4808 |
0.4116 | 44.0 | 1540 | 0.3290 | 0.6346 |
0.4116 | 45.0 | 1575 | 0.3320 | 0.6346 |
0.4116 | 46.0 | 1610 | 0.3365 | 0.6442 |
0.4116 | 47.0 | 1645 | 0.3346 | 0.6154 |
0.4116 | 48.0 | 1680 | 0.4108 | 0.4038 |
0.4116 | 49.0 | 1715 | 0.3304 | 0.6635 |
0.4116 | 50.0 | 1750 | 0.3487 | 0.5 |
0.4116 | 51.0 | 1785 | 0.4434 | 0.3846 |
0.4116 | 52.0 | 1820 | 0.4083 | 0.6346 |
0.4116 | 53.0 | 1855 | 0.3510 | 0.5385 |
0.4116 | 54.0 | 1890 | 0.3705 | 0.4327 |
0.4116 | 55.0 | 1925 | 0.3445 | 0.6346 |
0.4116 | 56.0 | 1960 | 0.3382 | 0.6346 |
0.4116 | 57.0 | 1995 | 0.3732 | 0.4231 |
0.3995 | 58.0 | 2030 | 0.3373 | 0.5962 |
0.3995 | 59.0 | 2065 | 0.3346 | 0.6346 |
0.3995 | 60.0 | 2100 | 0.3343 | 0.6346 |
0.3995 | 61.0 | 2135 | 0.3490 | 0.6346 |
0.3995 | 62.0 | 2170 | 0.3398 | 0.5865 |
0.3995 | 63.0 | 2205 | 0.3301 | 0.6442 |
0.3995 | 64.0 | 2240 | 0.3373 | 0.6346 |
0.3995 | 65.0 | 2275 | 0.3360 | 0.6346 |
0.3995 | 66.0 | 2310 | 0.3448 | 0.5192 |
0.3995 | 67.0 | 2345 | 0.3303 | 0.6538 |
0.3995 | 68.0 | 2380 | 0.3489 | 0.5192 |
0.3995 | 69.0 | 2415 | 0.3605 | 0.6346 |
0.3995 | 70.0 | 2450 | 0.3334 | 0.6346 |
0.3995 | 71.0 | 2485 | 0.3329 | 0.6442 |
0.3739 | 72.0 | 2520 | 0.3311 | 0.6346 |
0.3739 | 73.0 | 2555 | 0.3363 | 0.6058 |
0.3739 | 74.0 | 2590 | 0.3453 | 0.5481 |
0.3739 | 75.0 | 2625 | 0.3309 | 0.6538 |
0.3739 | 76.0 | 2660 | 0.3297 | 0.6346 |
0.3739 | 77.0 | 2695 | 0.3895 | 0.4231 |
0.3739 | 78.0 | 2730 | 0.3353 | 0.6058 |
0.3739 | 79.0 | 2765 | 0.3305 | 0.6442 |
0.3739 | 80.0 | 2800 | 0.3312 | 0.6538 |
Framework versions
- Transformers 4.26.1
- Pytorch 2.0.1+cu118
- Datasets 2.12.0
- Tokenizers 0.13.3