generated_from_trainer

<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. -->

20230829215851

This model is a fine-tuned version of bert-large-cased on the super_glue dataset. It achieves the following results on the evaluation set:

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 1.0 35 0.4376 0.6346
No log 2.0 70 0.5138 0.4327
No log 3.0 105 0.5153 0.6346
No log 4.0 140 0.3900 0.4808
No log 5.0 175 0.5940 0.3654
No log 6.0 210 0.3471 0.6346
No log 7.0 245 0.3330 0.6346
No log 8.0 280 1.2035 0.3942
No log 9.0 315 0.3783 0.4231
No log 10.0 350 0.4897 0.6346
No log 11.0 385 0.5676 0.4135
No log 12.0 420 0.4807 0.375
No log 13.0 455 0.3328 0.6346
No log 14.0 490 0.3723 0.5
0.5559 15.0 525 0.5093 0.4135
0.5559 16.0 560 0.4881 0.375
0.5559 17.0 595 0.7547 0.6346
0.5559 18.0 630 0.3326 0.6346
0.5559 19.0 665 0.4506 0.3846
0.5559 20.0 700 0.3371 0.6346
0.5559 21.0 735 0.3596 0.6346
0.5559 22.0 770 0.3361 0.6058
0.5559 23.0 805 0.3320 0.6346
0.5559 24.0 840 0.3634 0.6346
0.5559 25.0 875 0.3650 0.4327
0.5559 26.0 910 0.3396 0.5385
0.5559 27.0 945 0.3389 0.6346
0.5559 28.0 980 0.3324 0.6346
0.436 29.0 1015 0.3349 0.6346
0.436 30.0 1050 0.3328 0.6346
0.436 31.0 1085 0.3362 0.6346
0.436 32.0 1120 0.3402 0.5769
0.436 33.0 1155 0.3349 0.6058
0.436 34.0 1190 0.3313 0.6442
0.436 35.0 1225 0.4491 0.6346
0.436 36.0 1260 0.4079 0.3558
0.436 37.0 1295 0.3509 0.5096
0.436 38.0 1330 0.3543 0.4615
0.436 39.0 1365 0.3491 0.6346
0.436 40.0 1400 0.4716 0.3558
0.436 41.0 1435 0.5280 0.3654
0.436 42.0 1470 0.4004 0.4038
0.4116 43.0 1505 0.3505 0.4808
0.4116 44.0 1540 0.3290 0.6346
0.4116 45.0 1575 0.3320 0.6346
0.4116 46.0 1610 0.3365 0.6442
0.4116 47.0 1645 0.3346 0.6154
0.4116 48.0 1680 0.4108 0.4038
0.4116 49.0 1715 0.3304 0.6635
0.4116 50.0 1750 0.3487 0.5
0.4116 51.0 1785 0.4434 0.3846
0.4116 52.0 1820 0.4083 0.6346
0.4116 53.0 1855 0.3510 0.5385
0.4116 54.0 1890 0.3705 0.4327
0.4116 55.0 1925 0.3445 0.6346
0.4116 56.0 1960 0.3382 0.6346
0.4116 57.0 1995 0.3732 0.4231
0.3995 58.0 2030 0.3373 0.5962
0.3995 59.0 2065 0.3346 0.6346
0.3995 60.0 2100 0.3343 0.6346
0.3995 61.0 2135 0.3490 0.6346
0.3995 62.0 2170 0.3398 0.5865
0.3995 63.0 2205 0.3301 0.6442
0.3995 64.0 2240 0.3373 0.6346
0.3995 65.0 2275 0.3360 0.6346
0.3995 66.0 2310 0.3448 0.5192
0.3995 67.0 2345 0.3303 0.6538
0.3995 68.0 2380 0.3489 0.5192
0.3995 69.0 2415 0.3605 0.6346
0.3995 70.0 2450 0.3334 0.6346
0.3995 71.0 2485 0.3329 0.6442
0.3739 72.0 2520 0.3311 0.6346
0.3739 73.0 2555 0.3363 0.6058
0.3739 74.0 2590 0.3453 0.5481
0.3739 75.0 2625 0.3309 0.6538
0.3739 76.0 2660 0.3297 0.6346
0.3739 77.0 2695 0.3895 0.4231
0.3739 78.0 2730 0.3353 0.6058
0.3739 79.0 2765 0.3305 0.6442
0.3739 80.0 2800 0.3312 0.6538

Framework versions