<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. -->
EElayoutlmv3_jordyvl_rvl_cdip_100_examples_per_class_2023-09-01_txt_vis_concat_enc_4_ramp
This model is a fine-tuned version of microsoft/layoutlmv3-base on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 1.6270
- Accuracy: 0.7175
- Exit 0 Accuracy: 0.09
- Exit 1 Accuracy: 0.7225
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 2
- eval_batch_size: 1
- seed: 42
- gradient_accumulation_steps: 24
- total_train_batch_size: 48
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 60
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | Exit 0 Accuracy | Exit 1 Accuracy |
---|---|---|---|---|---|---|
No log | 0.96 | 16 | 2.6970 | 0.1225 | 0.05 | 0.0625 |
No log | 1.98 | 33 | 2.5370 | 0.2275 | 0.0375 | 0.0875 |
No log | 3.0 | 50 | 2.3578 | 0.2975 | 0.06 | 0.1175 |
No log | 3.96 | 66 | 2.1969 | 0.3925 | 0.0625 | 0.13 |
No log | 4.98 | 83 | 2.0006 | 0.4775 | 0.075 | 0.2325 |
No log | 6.0 | 100 | 1.8354 | 0.5175 | 0.0775 | 0.27 |
No log | 6.96 | 116 | 1.6223 | 0.5975 | 0.0775 | 0.3675 |
No log | 7.98 | 133 | 1.4348 | 0.65 | 0.0675 | 0.4525 |
No log | 9.0 | 150 | 1.2723 | 0.6775 | 0.07 | 0.4975 |
No log | 9.96 | 166 | 1.1623 | 0.6975 | 0.07 | 0.515 |
No log | 10.98 | 183 | 1.0860 | 0.7175 | 0.07 | 0.575 |
No log | 12.0 | 200 | 1.0837 | 0.6925 | 0.0725 | 0.57 |
No log | 12.96 | 216 | 1.0867 | 0.685 | 0.075 | 0.5975 |
No log | 13.98 | 233 | 1.0405 | 0.7125 | 0.075 | 0.5925 |
No log | 15.0 | 250 | 1.1247 | 0.7025 | 0.0775 | 0.6125 |
No log | 15.96 | 266 | 1.0507 | 0.7225 | 0.0825 | 0.615 |
No log | 16.98 | 283 | 1.1754 | 0.6875 | 0.08 | 0.6 |
No log | 18.0 | 300 | 1.1605 | 0.685 | 0.0775 | 0.63 |
No log | 18.96 | 316 | 1.1766 | 0.7025 | 0.0775 | 0.645 |
No log | 19.98 | 333 | 1.1271 | 0.7125 | 0.08 | 0.6375 |
No log | 21.0 | 350 | 1.1904 | 0.73 | 0.0825 | 0.6475 |
No log | 21.96 | 366 | 1.2511 | 0.7025 | 0.08 | 0.64 |
No log | 22.98 | 383 | 1.3078 | 0.7175 | 0.08 | 0.66 |
No log | 24.0 | 400 | 1.2960 | 0.7025 | 0.0775 | 0.6475 |
No log | 24.96 | 416 | 1.3926 | 0.695 | 0.08 | 0.6575 |
No log | 25.98 | 433 | 1.4649 | 0.69 | 0.0825 | 0.67 |
No log | 27.0 | 450 | 1.4266 | 0.7075 | 0.08 | 0.6925 |
No log | 27.96 | 466 | 1.4971 | 0.7 | 0.08 | 0.6775 |
No log | 28.98 | 483 | 1.3950 | 0.715 | 0.085 | 0.7 |
1.5293 | 30.0 | 500 | 1.4578 | 0.7125 | 0.0875 | 0.6925 |
1.5293 | 30.96 | 516 | 1.4085 | 0.7175 | 0.08 | 0.6925 |
1.5293 | 31.98 | 533 | 1.4643 | 0.705 | 0.0825 | 0.7025 |
1.5293 | 33.0 | 550 | 1.4807 | 0.7175 | 0.0825 | 0.705 |
1.5293 | 33.96 | 566 | 1.5091 | 0.73 | 0.0825 | 0.7025 |
1.5293 | 34.98 | 583 | 1.4994 | 0.7275 | 0.0825 | 0.7025 |
1.5293 | 36.0 | 600 | 1.5193 | 0.7275 | 0.0825 | 0.7125 |
1.5293 | 36.96 | 616 | 1.5334 | 0.7275 | 0.085 | 0.73 |
1.5293 | 37.98 | 633 | 1.5487 | 0.7075 | 0.08 | 0.7225 |
1.5293 | 39.0 | 650 | 1.5068 | 0.7225 | 0.0775 | 0.7175 |
1.5293 | 39.96 | 666 | 1.5550 | 0.7225 | 0.0825 | 0.72 |
1.5293 | 40.98 | 683 | 1.5202 | 0.7175 | 0.0825 | 0.7225 |
1.5293 | 42.0 | 700 | 1.6623 | 0.695 | 0.0875 | 0.705 |
1.5293 | 42.96 | 716 | 1.5383 | 0.725 | 0.09 | 0.725 |
1.5293 | 43.98 | 733 | 1.5419 | 0.7275 | 0.0875 | 0.715 |
1.5293 | 45.0 | 750 | 1.6383 | 0.715 | 0.085 | 0.7175 |
1.5293 | 45.96 | 766 | 1.6017 | 0.725 | 0.0875 | 0.7175 |
1.5293 | 46.98 | 783 | 1.5820 | 0.7325 | 0.085 | 0.715 |
1.5293 | 48.0 | 800 | 1.6027 | 0.72 | 0.0875 | 0.73 |
1.5293 | 48.96 | 816 | 1.6122 | 0.72 | 0.0925 | 0.7175 |
1.5293 | 49.98 | 833 | 1.6359 | 0.715 | 0.09 | 0.73 |
1.5293 | 51.0 | 850 | 1.6087 | 0.72 | 0.09 | 0.73 |
1.5293 | 51.96 | 866 | 1.6284 | 0.715 | 0.09 | 0.7175 |
1.5293 | 52.98 | 883 | 1.6058 | 0.72 | 0.09 | 0.72 |
1.5293 | 54.0 | 900 | 1.6177 | 0.7225 | 0.09 | 0.725 |
1.5293 | 54.96 | 916 | 1.6188 | 0.725 | 0.09 | 0.73 |
1.5293 | 55.98 | 933 | 1.6162 | 0.725 | 0.09 | 0.7275 |
1.5293 | 57.0 | 950 | 1.6261 | 0.7175 | 0.09 | 0.7225 |
1.5293 | 57.6 | 960 | 1.6270 | 0.7175 | 0.09 | 0.7225 |
Framework versions
- Transformers 4.31.0
- Pytorch 2.0.1+cu117
- Datasets 2.13.1
- Tokenizers 0.13.3