generated_from_trainer

<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. -->

EElayoutlmv3_jordyvl_rvl_cdip_100_examples_per_class_2023-09-01_txt_vis_concat_enc_4_ramp

This model is a fine-tuned version of microsoft/layoutlmv3-base on an unknown dataset. It achieves the following results on the evaluation set:

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

Training results

Training Loss Epoch Step Validation Loss Accuracy Exit 0 Accuracy Exit 1 Accuracy
No log 0.96 16 2.6970 0.1225 0.05 0.0625
No log 1.98 33 2.5370 0.2275 0.0375 0.0875
No log 3.0 50 2.3578 0.2975 0.06 0.1175
No log 3.96 66 2.1969 0.3925 0.0625 0.13
No log 4.98 83 2.0006 0.4775 0.075 0.2325
No log 6.0 100 1.8354 0.5175 0.0775 0.27
No log 6.96 116 1.6223 0.5975 0.0775 0.3675
No log 7.98 133 1.4348 0.65 0.0675 0.4525
No log 9.0 150 1.2723 0.6775 0.07 0.4975
No log 9.96 166 1.1623 0.6975 0.07 0.515
No log 10.98 183 1.0860 0.7175 0.07 0.575
No log 12.0 200 1.0837 0.6925 0.0725 0.57
No log 12.96 216 1.0867 0.685 0.075 0.5975
No log 13.98 233 1.0405 0.7125 0.075 0.5925
No log 15.0 250 1.1247 0.7025 0.0775 0.6125
No log 15.96 266 1.0507 0.7225 0.0825 0.615
No log 16.98 283 1.1754 0.6875 0.08 0.6
No log 18.0 300 1.1605 0.685 0.0775 0.63
No log 18.96 316 1.1766 0.7025 0.0775 0.645
No log 19.98 333 1.1271 0.7125 0.08 0.6375
No log 21.0 350 1.1904 0.73 0.0825 0.6475
No log 21.96 366 1.2511 0.7025 0.08 0.64
No log 22.98 383 1.3078 0.7175 0.08 0.66
No log 24.0 400 1.2960 0.7025 0.0775 0.6475
No log 24.96 416 1.3926 0.695 0.08 0.6575
No log 25.98 433 1.4649 0.69 0.0825 0.67
No log 27.0 450 1.4266 0.7075 0.08 0.6925
No log 27.96 466 1.4971 0.7 0.08 0.6775
No log 28.98 483 1.3950 0.715 0.085 0.7
1.5293 30.0 500 1.4578 0.7125 0.0875 0.6925
1.5293 30.96 516 1.4085 0.7175 0.08 0.6925
1.5293 31.98 533 1.4643 0.705 0.0825 0.7025
1.5293 33.0 550 1.4807 0.7175 0.0825 0.705
1.5293 33.96 566 1.5091 0.73 0.0825 0.7025
1.5293 34.98 583 1.4994 0.7275 0.0825 0.7025
1.5293 36.0 600 1.5193 0.7275 0.0825 0.7125
1.5293 36.96 616 1.5334 0.7275 0.085 0.73
1.5293 37.98 633 1.5487 0.7075 0.08 0.7225
1.5293 39.0 650 1.5068 0.7225 0.0775 0.7175
1.5293 39.96 666 1.5550 0.7225 0.0825 0.72
1.5293 40.98 683 1.5202 0.7175 0.0825 0.7225
1.5293 42.0 700 1.6623 0.695 0.0875 0.705
1.5293 42.96 716 1.5383 0.725 0.09 0.725
1.5293 43.98 733 1.5419 0.7275 0.0875 0.715
1.5293 45.0 750 1.6383 0.715 0.085 0.7175
1.5293 45.96 766 1.6017 0.725 0.0875 0.7175
1.5293 46.98 783 1.5820 0.7325 0.085 0.715
1.5293 48.0 800 1.6027 0.72 0.0875 0.73
1.5293 48.96 816 1.6122 0.72 0.0925 0.7175
1.5293 49.98 833 1.6359 0.715 0.09 0.73
1.5293 51.0 850 1.6087 0.72 0.09 0.73
1.5293 51.96 866 1.6284 0.715 0.09 0.7175
1.5293 52.98 883 1.6058 0.72 0.09 0.72
1.5293 54.0 900 1.6177 0.7225 0.09 0.725
1.5293 54.96 916 1.6188 0.725 0.09 0.73
1.5293 55.98 933 1.6162 0.725 0.09 0.7275
1.5293 57.0 950 1.6261 0.7175 0.09 0.7225
1.5293 57.6 960 1.6270 0.7175 0.09 0.7225

Framework versions